Biological Network Approaches and Applications in Rare Disease Studies

Network biology has the capability to integrate, represent, interpret, and model complex biological systems by collectively accommodating biological omics data, biological interactions and associations, graph theory, statistical measures, and visualizations. Biological networks have recently been shown to be very useful for studies that decipher biological mechanisms and disease etiologies and for studies that predict therapeutic responses, at both the molecular and system levels. In this review, we briefly summarize the general framework of biological network studies, including data resources, network construction methods, statistical measures, network topological properties, and visualization tools. We also introduce several recent biological network applications and methods for the studies of rare diseases.

[1]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[2]  Igor Jurisica,et al.  NAViGaTOR: Large Scalable and Interactive Navigation and Analysis of Large Graphs , 2011, Internet Math..

[3]  Jianmin Wu,et al.  Integrated network analysis platform for protein-protein interactions , 2009, Nature Methods.

[4]  Esti Yeger Lotem,et al.  The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues , 2016, Nucleic Acids Res..

[5]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[6]  Yves Moreau,et al.  PINTA: a web server for network-based gene prioritization from expression data , 2011, Nucleic Acids Res..

[7]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[8]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[10]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[11]  Weiping Chen,et al.  A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks , 2016, Briefings Bioinform..

[12]  Teresa M. Przytycka,et al.  Chapter 5: Network Biology Approach to Complex Diseases , 2012, PLoS Comput. Biol..

[13]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[14]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[15]  Peilin Jia,et al.  Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association Studies in Schizophrenia , 2012, PLoS Comput. Biol..

[16]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[17]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[18]  P. Holland,et al.  TRANSITIVITY IN STRUCTURAL MODELS OF SMALL GROUPS , 1977 .

[19]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[20]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[21]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[22]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[23]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[24]  Yuan Ji,et al.  Bayesian graphical models for computational network biology , 2017, BMC Bioinformatics.

[25]  Shannon L. Risacher,et al.  Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data , 2017, Briefings Bioinform..

[26]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[27]  Nora Husain,et al.  The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency , 2012, Nucleic Acids Res..

[28]  Martin H. Schaefer,et al.  HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks , 2016, Nucleic Acids Res..

[29]  Nuno A. Fonseca,et al.  ArrayExpress update – from bulk to single-cell expression data , 2018, Nucleic Acids Res..

[30]  Yunting Lin,et al.  Clinical Management and Gene Mutation Analysis of Children with Congenital Hyperinsulinism in South China , 2019, Journal of clinical research in pediatric endocrinology.

[31]  Z. R. Li,et al.  PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks. , 2017, Journal of molecular biology.

[32]  A. Barabasi,et al.  Uncovering disease-disease relationships through the incomplete interactome , 2015, Science.

[33]  F. Dhombres,et al.  Representation of rare diseases in health information systems: The orphanet approach to serve a wide range of end users , 2012, Human mutation.

[34]  A. Stevens,et al.  Can network biology unravel the aetiology of congenital hyperinsulinism? , 2013, Orphanet Journal of Rare Diseases.

[35]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[36]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[37]  Judith A. Blake,et al.  Mouse Genome Database (MGD) 2019 , 2018, Nucleic Acids Res..

[38]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[39]  J. Casanova,et al.  Inborn errors of anti-viral interferon immunity in humans. , 2011, Current opinion in virology.

[40]  Jun Dong,et al.  Understanding network concepts in modules , 2007, BMC Systems Biology.

[41]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[42]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[43]  P. Holland,et al.  Transitivity in Structural Models of Small Groups , 1971 .

[44]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[45]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[46]  Hui Yang,et al.  Phenolyzer: phenotype-based prioritization of candidate genes for human diseases , 2015, Nature Methods.

[47]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[48]  Igor Jurisica,et al.  IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species , 2018, Nucleic Acids Res..

[49]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[50]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[51]  Viktor Martyanov,et al.  Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms , 2015, PLoS Comput. Biol..

[52]  Søren Brunak,et al.  Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes , 2017, Front. Genet..

[53]  Finn Drabløs,et al.  Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals , 2016, Nucleic Acids Res..

[54]  Michael Schroeder,et al.  Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes , 2012, PLoS Comput. Biol..

[55]  Wei Zheng,et al.  dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks , 2011, Bioinform..

[56]  M. Schroeder,et al.  Drug target prioritization by perturbed gene expression and network information , 2015, Scientific Reports.

[57]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[58]  A. Barabasi,et al.  Tissue Specificity of Human Disease Module , 2016, Scientific Reports.

[59]  A. Smahi,et al.  TLR3 Deficiency in Patients with Herpes Simplex Encephalitis , 2007, Science.

[60]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[61]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[62]  M. Ramanathan,et al.  Network‐Based Approaches in Drug Discovery and Early Development , 2013, Clinical pharmacology and therapeutics.

[63]  Roded Sharan,et al.  Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction Networks , 2012, PLoS Comput. Biol..

[64]  Mehmet Koyutürk,et al.  Vavien: An Algorithm for Prioritizing Candidate Disease Genes Based on Topological Similarity of Proteins in Interaction Networks , 2011, J. Comput. Biol..

[65]  J. Casanova,et al.  Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency , 2006, Science.

[66]  J. Casanova,et al.  Life‐threatening infectious diseases of childhood: single‐gene inborn errors of immunity? , 2010, Annals of the New York Academy of Sciences.

[67]  James C. Hu,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2019 .

[68]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[69]  K. Hussain,et al.  The genetic basis of congenital hyperinsulinism , 2009, Journal of Medical Genetics.

[70]  Razvan C. Bunescu,et al.  Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome , 2005, Genome Biology.

[71]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[72]  S. Brunak,et al.  Network biology concepts in complex disease comorbidities , 2016, Nature Reviews Genetics.

[73]  Avi Ma’ayan Introduction to Network Analysis in Systems Biology , 2011, Science Signaling.

[74]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008 .

[75]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[76]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[77]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[78]  Guillaume Vogt,et al.  The human gene connectome as a map of short cuts for morbid allele discovery , 2013, Proceedings of the National Academy of Sciences.

[79]  Paul Flicek,et al.  The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data , 2016, Nucleic Acids Res..

[80]  Yuanfang Guan,et al.  Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes , 2012, PLoS Comput. Biol..

[81]  Cheng Zhu,et al.  A vertex similarity-based framework to discover and rank orphan disease-related genes , 2012, BMC Systems Biology.

[82]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[83]  Haiyuan Yu,et al.  Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.

[84]  Andrew J. Bulpitt,et al.  A Primer on Learning in Bayesian Networks for Computational Biology , 2007, PLoS Comput. Biol..

[85]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[86]  Matthias Dehmer,et al.  QuACN: an R package for analyzing complex biological networks quantitatively , 2011, Bioinform..

[87]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[88]  Zhengdong D. Zhang,et al.  Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies , 2017, PLoS genetics.

[89]  Ben Lehner,et al.  Tissue specificity and the human protein interaction network , 2009, Molecular systems biology.

[90]  Dong-Qing Wei,et al.  Rare Diseases: Drug Discovery and Informatics Resource , 2017, Interdisciplinary Sciences: Computational Life Sciences.

[91]  John D. Storey,et al.  A network-based analysis of systemic inflammation in humans , 2005, Nature.

[92]  Hedi Peterson,et al.  GraphWeb: mining heterogeneous biological networks for gene modules with functional significance , 2008, Nucleic Acids Res..

[93]  T. Nikolskaya,et al.  A comprehensive functional analysis of tissue specificity of human gene expression , 2008, BMC Biology.

[94]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[95]  Amber Hoskins Genetic and Rare Diseases Information Center (CARD) , 2006, Medical reference services quarterly.

[96]  Peng Zhang,et al.  PopViz: a webserver for visualizing minor allele frequencies and damage prediction scores of human genetic variations , 2018, Bioinform..

[97]  Tingting Fu,et al.  Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics , 2017, Nucleic Acids Res..

[98]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[99]  Joel E. Richardson,et al.  The mouse Gene Expression Database (GXD): 2019 update , 2018, Nucleic Acids Res..

[100]  Dragomir R. Radev,et al.  Identifying gene-disease associations using centrality on a literature mined gene-interaction network , 2008, ISMB.

[101]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[102]  Zhiyong Lu,et al.  DIGNiFI: Discovering causative genes for orphan diseases using protein-protein interaction networks , 2016, BMC Systems Biology.

[103]  R. D. du Bois,et al.  Rare Diseases , 1946, ERS Handbook of Paediatric Respiratory Medicine.

[104]  Kara Dolinski,et al.  The BioGRID interaction database: 2019 update , 2018, Nucleic Acids Res..

[105]  Gábor Iván,et al.  Equal Opportunity for Low-Degree Network Nodes: A PageRank-Based Method for Protein Target Identification in Metabolic Graphs , 2013, PloS one.

[106]  Ali Masoudi-Nejad,et al.  Ac ce pt ed M an us cr ip t Information Theory in Systems Biology : Gene Regulatory and Metabolic Networks , 2015 .

[107]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[108]  J. Casanova,et al.  Novel Primary Immunodeficiency Candidate Genes Predicted by the Human Gene Connectome , 2015, Front. Immunol..

[109]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[110]  Yukiko Matsuoka,et al.  Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases , 2011, Bioinform..

[111]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[112]  Ali Masoudi-Nejad,et al.  Ac ce pt ed M an us cr ip t Information Theory in Systems Biology : Protein-Protein Interaction and Signaling Networks , 2015 .

[113]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[114]  Jaclyn N. Taroni,et al.  A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis , 2017, Genome Medicine.

[115]  Matthias E. Futschik,et al.  Targeting molecular networks for drug research , 2014, Front. Genet..

[116]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .