Comparing the excepted values of atom-bond connectivity and geometric–arithmetic indices in random spiro chains

The atom-bond connectivity (ABC) index and geometric–arithmetic (GA) index are two well-studied topological indices, which are useful tools in QSPR and QSAR investigations. In this paper, we first obtain explicit formulae for the expected values of ABC and GA indices in random spiro chains, which are graphs of a class of unbranched polycyclic aromatic hydrocarbons. Based on these formulae, we then present the average values of ABC and GA indices with respect to the set of all spiro chains with n hexagons and make a comparison between the expected values of ABC and GA indices in random spiro chains.

[1]  M. Randic Characterization of molecular branching , 1975 .

[2]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  J. W. Kennedy,et al.  Wiener numbers of random benzenoid chains , 1990 .

[5]  J. W. Kennedy,et al.  Perfect matchings in random hexagonal chain graphs , 1991 .

[6]  Darren R. Flower,et al.  On the Properties of Bit String-Based Measures of Chemical Similarity , 1998, J. Chem. Inf. Comput. Sci..

[7]  Ernesto Estrada,et al.  AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .

[8]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[9]  I. Gutman,et al.  A class of modified Wiener indices , 2004 .

[10]  L. Hanley,et al.  Photoemission studies of polythiophene and polyphenyl films produced via surface polymerization by ion-assisted deposition. , 2005, The journal of physical chemistry. B.

[11]  Ernesto Estrada Atom–bond connectivity and the energetic of branched alkanes , 2008 .

[12]  I. Gutman,et al.  On two types of geometric–arithmetic index , 2009 .

[13]  R. Todeschini,et al.  Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing / Volume II: Appendices, References , 2009 .

[14]  Ante Graovac,et al.  Atom-bond connectivity index of trees , 2009, Discret. Appl. Math..

[15]  Fuji Zhang,et al.  Wiener Index and Perfect Matchings in Random Phenylene Chains , 2009 .

[16]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[17]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[18]  N. Trinajstic,et al.  Comparison between first geometric–arithmetic index and atom-bond connectivity index , 2010 .

[19]  Kinkar Chandra Das,et al.  Atom-bond connectivity index of graphs , 2010, Discret. Appl. Math..

[20]  Bo Zhou,et al.  On geometric-arithmetic index , 2010 .

[21]  郭晓峰,et al.  Extreme Atom-Bond Connectivity Index of Graphs , 2011 .

[22]  T. Došlić,et al.  Matchings and independent sets in polyphenylene chains , 2012 .

[23]  Fuji Zhang,et al.  Wiener Index in Random Polyphenyl Chains , 2012 .

[24]  Hanyuan Deng,et al.  Wiener indices of spiro and polyphenyl hexagonal chains , 2010, Math. Comput. Model..

[25]  Xiaoling Ke Atom-bond Connectivity Index of Benzenoid Systems and Fluoranthene Congeners , 2012 .

[26]  Ernesto Estrada,et al.  Chemical Graph Theory , 2013 .

[27]  Ljiljana Pavlovic,et al.  Extremal graphs for the geometric-arithmetic index with given minimum degree , 2014, Discret. Appl. Math..

[28]  Shouliu Wei,et al.  Perfect matchings in random polyomino chain graphs , 2016, Journal of Mathematical Chemistry.

[29]  Hanyuan Deng,et al.  The expected values of Kirchhoff indices in the random polyphenyl and spiro chains , 2014, Ars Math. Contemp..

[30]  Hua Wang,et al.  Subtrees of spiro and polyphenyl hexagonal chains , 2015, Appl. Math. Comput..

[31]  Jose Maria Sigarreta,et al.  Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..

[32]  Hanyuan Deng,et al.  The expected values of Hosoya index and Merrifield–Simmons index in a random polyphenylene chain , 2015, Journal of Combinatorial Optimization.

[33]  Hua Wang,et al.  On Spiro and polyphenyl hexagonal chains with respect to the number of BC-subtrees , 2017, Int. J. Comput. Math..

[34]  Shouliu Wei,et al.  The Atom-Bond Connectivity and Geometric-Arithmetic Indices in Random Polyphenyl Chains , 2020, Polycyclic Aromatic Compounds.