Design, synthesis and biological properties of seco-d-ring modified 1α,25-dihydroxyvitamin D3 analogues

[1]  H. DeLuca,et al.  D-seco-Vitamin D analogs having reversed configurations at C-13 and C-14: Synthesis, docking studies and biological evaluation , 2017, The Journal of Steroid Biochemistry and Molecular Biology.

[2]  D. Bikle,et al.  Vitamin D metabolism, mechanism of action, and clinical applications. , 2014, Chemistry & biology.

[3]  G. Bringmann,et al.  SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. , 2013, Chirality.

[4]  G. Chiellini,et al.  A-ring analogs of 1,25-dihydroxyvitamin D(3). , 2012, Archives of biochemistry and biophysics.

[5]  J. Pike,et al.  Regulation of target gene expression by the vitamin D receptor - an update on mechanisms , 2012, Reviews in Endocrine and Metabolic Disorders.

[6]  H. DeLuca,et al.  Vitamin D, disease and therapeutic opportunities , 2010, Nature Reviews Drug Discovery.

[7]  J. Reichrath,et al.  The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. , 2009, Anticancer research.

[8]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[9]  Alex J. Brown,et al.  Vitamin D analogs: therapeutic applications and mechanisms for selectivity. , 2008, Molecular aspects of medicine.

[10]  C. Mathieu,et al.  Mechanism and potential of the growth-inhibitory actions of vitamin D and ana-logs. , 2007, Current medicinal chemistry.

[11]  M. Campbell,et al.  The vitamin D receptor as a therapeutic target , 2006, Expert opinion on therapeutic targets.

[12]  Keiko Yamamoto,et al.  Ligand recognition by vitamin D receptor: total alanine scanning mutational analysis of the residues lining the ligand binding pocket of vitamin D receptor. , 2006, Current topics in medicinal chemistry.

[13]  H. DeLuca,et al.  NMR assignments of tryptophan residue in apo and holo LBD‐rVDR , 2005, Proteins.

[14]  R. Evans,et al.  The Nuclear Receptor Superfamily: a Rosetta Stone for Physiology , 1985 .

[15]  C. Carlberg,et al.  New vitamin D receptor ligands , 2003 .

[16]  M. Stein,et al.  An update on the therapeutic potential of vitamin D analogues , 2003, Expert opinion on investigational drugs.

[17]  H. DeLuca,et al.  Where is the vitamin D receptor? , 2002, Archives of biochemistry and biophysics.

[18]  C. Carlberg,et al.  Central role of VDR conformations for understanding selective actions of vitamin D3 analogues , 2001, Steroids.

[19]  M. Haussler,et al.  Biological Activity of CD‐Ring Modified 1α,25‐Dihydroxyvitamin D Analogues: C‐Ring and Five‐Membered D‐Ring Analogues , 2000 .

[20]  H. DeLuca,et al.  Synthesis and biological activity of 22-iodo- and (E)-20(22)-dehydro analogues of 1α, 25-dihydroxyvitamin D3 , 1999 .

[21]  H. DeLuca,et al.  New 1alpha,25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. , 1998, Journal of medicinal chemistry.

[22]  C. Ra,et al.  Enantioselective Synthesis of a trans-Hydrindane System for the Preparation of Vitamin D Metabolites. , 1997 .

[23]  T. Suzuki,et al.  A total synthesis of calcitriol , 1992 .

[24]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[25]  K. Zhao,et al.  The allylic epoxide cyclization. A method for the control of regiochemistry and stereochemistry in cyclohexane systems , 1990 .

[26]  H. DeLuca,et al.  Induction of monocytic differentiation of HL-60 cells by 1,25-dihydroxyvitamin D analogs. , 1987, The Journal of biological chemistry.

[27]  A. Pfenninger Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation , 1986 .

[28]  H. DeLuca,et al.  Biological activity of 25-hydroxyergocalciferol in rats. , 1970, The Journal of nutrition.

[29]  H. DeLuca,et al.  Influence of sodium on calcium transport by the rat small intestine. , 1969, The American journal of physiology.

[30]  H. DeLuca Vitamin D: Historical Overview. , 2016, Vitamins and hormones.

[31]  H. DeLuca,et al.  Analogs of 1α,25-Dihydroxyvitamin D₃ in Clinical Use. , 2016, Vitamins and hormones.

[32]  D. Bikle Nonclassic actions of vitamin D. , 2009, The Journal of clinical endocrinology and metabolism.

[33]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[34]  R. Sicinski 2-Alkylidene Analogs of 19-nor-1alfa,25-(OH)2D3: Synthesis and Biological Activity , 2006 .

[35]  T. Hahn International tables for crystallography , 2002 .

[36]  Christoph Janiak,et al.  A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands , 2000 .

[37]  D. Moras,et al.  The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. , 2000, Molecular cell.

[38]  H. DeLuca,et al.  A highly sensitive method for large-scale measurements of 1,25-dihydroxyvitamin D. , 1998, Analytical biochemistry.

[39]  H. DeLuca,et al.  1α,25-dihydroxy-19-nor-vitamin D3, a novel vitamin D-related compound with potential therapeutic activity , 1990 .