Multiplex PCR and Oligonucleotide Microarray for Detection of Single-Nucleotide Polymorphisms Associated with Plasmodium falciparum Drug Resistance

ABSTRACT Drug resistance in Plasmodium falciparum is a serious public health threat in the countries where this organism is endemic. Since resistance has been associated with specific single-nucleotide polymorphisms (SNPs) in parasite genes, molecular markers are becoming useful surrogates for monitoring the emergence and dispersion of drug resistance. In this study, a multiplex PCR (mPCR) and oligonucleotide microarray method was developed for the detection of these SNPs in genes encoding chloroquine resistance transporter (Pfcrt), multidrug resistance 1 (Pfmdr1), dihydrofolate reductase (Pfdhfr), dihydropteroate synthetase (Pfdhps), and ATPase 6 (PfATPase6) of P. falciparum. The results show that DNA microarray technology, combined with mPCR, is a promising and time-saving tool that supports conventional detection methods, allowing sensitive, accurate, simultaneous analysis of the SNPs associated with drug resistance in P. falciparum.

[1]  K. No,et al.  Three-dimensional structure of Plasmodium falciparum Ca2+ -ATPase(PfATP6) and docking of artemisinin derivatives to PfATP6. , 2005, Bioorganic & medicinal chemistry letters.

[2]  C. Dye,et al.  World Malaria Report, 2008. , 2008 .

[3]  A. Ehrenreich DNA microarray technology for the microbiologist: an overview , 2006, Applied Microbiology and Biotechnology.

[4]  J. Le bras,et al.  Use of Molecular Beacons To Detect an Antifolate Resistance-Associated Mutation in Plasmodium falciparum , 2000, Antimicrobial Agents and Chemotherapy.

[5]  O. Doumbo,et al.  Molecular diagnosis of resistance to antimalarial drugs during epidemics and in war zones. , 2004, The Journal of infectious diseases.

[6]  Eric Legrand,et al.  Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6 , 2005, The Lancet.

[7]  S. Krishna,et al.  Artemisinins target the SERCA of Plasmodium falciparum , 2003, Nature.

[8]  M. Msellem,et al.  In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). , 2005, The Journal of infectious diseases.

[9]  S. Meshnick,et al.  Real-time PCR methods for monitoring antimalarial drug resistance. , 2005, Trends in parasitology.

[10]  Hui Wang,et al.  Development and clinical evaluation of oligonucleotide microarray for HLA-AB genotyping. , 2006, Pharmacogenomics.

[11]  M. Ibrahim,et al.  High frequency of Plasmodium falciparum PfCRT K76T and PfpghN86Y in patients clearing infection after chloroquine treatment in the Sudan. , 2006, Acta tropica.

[12]  J. Barnwell,et al.  Pyrosequencing, a High-Throughput Method for Detecting Single Nucleotide Polymorphisms in the Dihydrofolate Reductase and Dihydropteroate Synthetase Genes of Plasmodium falciparum , 2006, Journal of Clinical Microbiology.

[13]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[14]  T. Theander,et al.  A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent assay-based technolog , 2005, The American journal of tropical medicine and hygiene.

[15]  J. Harel,et al.  Development and Validation of an Oligonucleotide Microarray for Detection of Multiple Virulence and Antimicrobial Resistance Genes in Escherichia coli , 2006, Applied and Environmental Microbiology.

[16]  J. Kublin,et al.  Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. , 2002, The Journal of infectious diseases.

[17]  M. Drebot,et al.  Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. , 2003, Molecular and cellular probes.

[18]  S. Kano [Drug resistant malaria]. , 2003, Nihon rinsho. Japanese journal of clinical medicine.

[19]  C. Plowe Monitoring antimalarial drug resistance: making the most of the tools at hand , 2003, Journal of Experimental Biology.

[20]  C. Plowe,et al.  Mechanisms of Resistance of Malaria Parasites to Antifolates , 2005, Pharmacological Reviews.

[21]  V. Perreten,et al.  Microarray-Based Detection of 90 Antibiotic Resistance Genes of Gram-Positive Bacteria , 2005, Journal of Clinical Microbiology.

[22]  D. Warhurst A molecular marker for chloroquine-resistant falciparum malaria. , 2001, The New England journal of medicine.

[23]  D. Wirth,et al.  Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. , 2005, Acta tropica.

[24]  S. Kyes,et al.  PCR and strain identification in Plasmodium falciparum. , 1993, Parasitology today.

[25]  C. Drakeley,et al.  Molecular Determination of Point Mutation Haplotypes in the Dihydrofolate Reductase and Dihydropteroate Synthase of Plasmodium falciparum in Three Districts of Northern Tanzania , 2003, Antimicrobial Agents and Chemotherapy.

[26]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[27]  A. Björkman,et al.  Multiplex PCR-RFLP methods for pfcrt, pfmdr1 and pfdhfr mutations in Plasmodium falciparum. , 2006, Molecular and cellular probes.

[28]  M. Duraisingh,et al.  Multiple drug resistance genes in malaria – from epistasis to epidemiology , 2005, Molecular microbiology.

[29]  C. J. Woodrow,et al.  Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance , 2006, Cellular and Molecular Life Sciences CMLS.

[30]  K. Kirk,et al.  Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum , 2000, Nature.

[31]  Markus H. Antwerpen,et al.  DNA microarray for detection of antibiotic resistance determinants in Bacillus anthracis and closely related Bacillus cereus. , 2007, Molecular and cellular probes.

[32]  D. Stenger,et al.  Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Plitt,et al.  Detection of pyrimethamine resistance in Plasmodium falciparum by mutation-specific polymerase chain reaction. , 1990, Molecular and biochemical parasitology.

[34]  M. Duraisingh,et al.  Plasmodium falciparum: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. , 1998, Experimental parasitology.

[35]  L. Ranford-Cartwright,et al.  Detection of mutations in the Plasmodium falciparum dihydrofolate reductase (dhfr) gene by dot-blot hybridization. , 2002, The American journal of tropical medicine and hygiene.

[36]  Ruth H. Hughes,et al.  A critical role for PfCRT K76T in Plasmodium falciparum verapamil‐reversible chloroquine resistance , 2005, The EMBO journal.

[37]  O. Gaye,et al.  Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in Senegal , 2005, Tropical medicine & international health : TM & IH.

[38]  D. Fidock,et al.  Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents. , 2004, Molecular cell.