New approaches in brain morphometry.

The complexity and variability of the human brain across subjects is so great that reliance on maps and atlases is essential to effectively manipulate, analyze, and interpret brain data. Central to these tasks is the construction of averages, templates, and models to describe how the brain and its component parts are organized. Design of appropriate reference systems for human brain data presents considerable challenges because these systems must capture how brain structure and function vary in large populations, across age and gender, in different disease states, across imaging modalities, and even across species. The authors introduce the topic of brain maps as applied to a variety of questions and problems in health and disease and include a brief survey of the types of maps relevant to mental disorders, including maps that capture dynamic patterns of brain change in dementia.

[1]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[2]  J. Talairach Atlas d'anatomie stéréotaxique du télencéphale : études anatomo-radiologiques , 1967 .

[3]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[4]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[5]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[6]  T. Greitz,et al.  Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. , 1983, AJNR. American journal of neuroradiology.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[9]  M. Mintun,et al.  Enhanced Detection of Focal Brain Responses Using Intersubject Averaging and Change-Distribution Analysis of Subtracted PET Images , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  O Missir,et al.  Central sulcus patterns at MRI. , 1989, Journal of neuroradiology. Journal de neuroradiologie.

[11]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[12]  Karl J. Friston,et al.  Localisation in PET Images: Direct Fitting of the Intercommissural (AC—PC) Line , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  H. Freund,et al.  Cerebral Cortical Localization: Application and Validation of the Proportional Grid System in MR Imaging , 1989, Journal of computer assisted tomography.

[14]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[15]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[16]  H. Freund,et al.  Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. , 1990, AJNR. American journal of neuroradiology.

[17]  A Olivier,et al.  Electrophysiological analysis of human neocortex in vitro: experimental techniques and methodological approaches. , 1991, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques.

[18]  Karl J. Friston,et al.  Plastic transformation of PET images. , 1991, Journal of computer assisted tomography.

[19]  J. C. Principe,et al.  3-D computer animation of electrophysiological responses , 1992, Journal of Neuroscience Methods.

[20]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[21]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[22]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[23]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[24]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[25]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[26]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R E Jacobs,et al.  Magnetic resonance microscopy of embryonic cell lineages and movements. , 1994, Science.

[28]  D E Kuhl,et al.  Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[30]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[31]  J. Ehrhardt,et al.  Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. , 1994, Science.

[32]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[33]  Arthur W. Toga,et al.  Postmortem anatomy from cryosectioned whole human brain , 1994, Journal of Neuroscience Methods.

[34]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[35]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[36]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[37]  H. Damasio Human Brain Anatomy in Computerized Images , 1995 .

[38]  D. Le Bihan,et al.  Functional MRI of the brain principles, applications and limitations. , 1996 .

[39]  Nick C Fox,et al.  Visualisation and quantification of rates of atrophy in Alzheimer's disease , 1996, The Lancet.

[40]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[41]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[42]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[43]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[44]  David Metcalf,et al.  A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching , 1996, IEEE Trans. Vis. Comput. Graph..

[45]  Nick C Fox,et al.  Accurate registration of serial 3D MR brain images and its application to visualizing change in neurodegenerative disorders. , 1996, Journal of computer assisted tomography.

[46]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[47]  R. Woods Modeling for Intergroup Comparisons of Imaging Data , 1996, NeuroImage.

[48]  G H Whitehouse,et al.  Automatic analysis of cerebral atrophy. , 1997, Magnetic resonance imaging.

[49]  Gérard Subsol,et al.  Statistical Analysis of Dissymmetry in Volumetric Medical Images , 1997 .

[50]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[51]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[52]  Arthur W. Toga,et al.  A Three-Dimensional Multimodality Brain Map of the Nemestrina Monkey , 1997, Brain Research Bulletin.

[53]  H A Drury,et al.  Functional specializations in human cerebral cortex analyzed using the visible man surface‐based atlas , 1997, Human brain mapping.

[54]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[55]  G. Paxinos,et al.  Atlas of the Human Brain , 2000 .

[56]  R. Woods,et al.  Mapping Histology to Metabolism: Coregistration of Stained Whole-Brain Sections to Premortem PET in Alzheimer's Disease , 1997, NeuroImage.

[57]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[58]  S. Lawrie,et al.  Brain abnormality in schizophrenia , 1998, British Journal of Psychiatry.

[59]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[60]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[62]  Neil Roberts,et al.  Statistical analysis of normal and abnormal dissymmetry in volumetric medical images , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[63]  A. Toga,et al.  In vivo evidence for post-adolescent brain maturation in frontal and striatal regions , 1999, Nature Neuroscience.

[64]  J C Mazziotta,et al.  Mapping biochemistry to metabolism: FDG-PET and amyloid burden in Alzheimer's disease. , 1999, Neuroreport.

[65]  H. Duvernoy The Human Brain , 1999, Springer Vienna.

[66]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[67]  Paul M. Thompson,et al.  Anatomically Driven Strategies for High-Dimensional Brain Image Warping and Pathology Detection , 1999 .

[68]  K. Worsley,et al.  The detection of local shape changes via the geometry of Hotelling's $T^2$ fields , 1999 .

[69]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[70]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[71]  Paul M. Thompson,et al.  6 – Disease-Specific Brain Atlases , 2000 .

[72]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[73]  S. Joshi,et al.  Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus , 2000, Neurology.

[74]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[75]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[76]  J. Rapoport,et al.  Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J C Mazziotta,et al.  Mapping Therapeutic Response in a Patient with Malignant Glioma , 2001, Journal of computer assisted tomography.

[78]  Paul M. Thompson,et al.  A probabalistic atlas of cortical gray matter changes in monozogotic twins discordant for schizophrenia , 2001, NeuroImage.

[79]  James C. Gee,et al.  Characterizing populations and searching for diagnostics via elastic registration of MRI images , 2001, SPIE Medical Imaging.

[80]  P M Thompson,et al.  Unfolding the human hippocampus with high resolution structural and functional MRI , 2001, The Anatomical record.

[81]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[82]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  Paul M. Thompson,et al.  Detecting Disease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and a Population-Based Probabilistic Brain Atlas , 2001, IPMI.

[84]  Paul M. Thompson,et al.  Accelerated brain growth and cortical gray matter thinning are inversely related during post adolescent frontal lobe maturation , 2001, NeuroImage.

[85]  A. Toga,et al.  Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships during Postadolescent Brain Maturation , 2001, The Journal of Neuroscience.

[86]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[87]  Martin Styner,et al.  Medial Models Incorporating Object Variability for 3D Shape Analysis , 2001, IPMI.

[88]  Sergio Cerutti,et al.  An elastic computerized brain atlas for the analysis of clinical PET/SPET data , 1995, European Journal of Nuclear Medicine.

[89]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.