Stress-based vapor sensing using resonant microbridges

We demonstrate that silicon-polymer composite microbridges provide a robust means of water vapor detection at ambient pressure. Volumetric changes in the reactive polymer alter the tension in a doubly clamped structure leading to large and rapid changes in the resonance frequency. We demonstrate stress-based sensing of water vapor in ambient pressure nitrogen using doubly clamped buckled beams coated with a hygroscopic polymer. We show stress sensitivity of around 20 kPa (∼170 ppb of water vapor) and subsecond response time for coated microbridges.

[1]  Koutilya R Buchapudi,et al.  Microcantilever biosensors based on conformational change of proteins. , 2008, The Analyst.

[2]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[3]  Isabelle Dufour,et al.  Zeolite-modified cantilevers for the sensing of nitrotoluene vapors , 2009 .

[4]  Gianluca Piazza,et al.  Nanoenabled microelectromechanical sensor for volatile organic chemical detection , 2009 .

[5]  Harold G. Craighead,et al.  Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography , 1997 .

[6]  H. Craighead,et al.  Piezoresistive transduction in multilayer polycrystalline silicon resonators , 2009 .

[7]  J. C. Kapoor,et al.  Landmine Detection Technologies to TraceExplosive Vapour Detection Techniques , 2007 .

[8]  C. C. Huang,et al.  Efficient and sensitive capacitive readout of nanomechanical resonator arrays. , 2007, Nano letters.

[9]  Jize Yan,et al.  Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity , 2010 .

[10]  T L Porter,et al.  Hydration level monitoring using embedded piezoresistive microcantilever sensors. , 2005, Medical engineering & physics.

[11]  Jeevak M. Parpia,et al.  Pressure dependent resonant frequency of micromechanical drumhead resonators , 2009 .

[12]  G. Fedder,et al.  Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons , 2005, IEEE Sensors Journal.

[13]  José Luis Sánchez-Rojas,et al.  Characterization and analytical validation of a microcantilever-based sensor for the determination of total carbonate in soil samples , 2008 .

[14]  T. Thundat,et al.  Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers , 2003 .

[15]  Murali Krishna Ghatkesar,et al.  Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. , 2009, Nature nanotechnology.

[16]  Rob Ilic,et al.  Size and frequency dependent gas damping of nanomechanical resonators , 2008 .

[17]  Weileun Fang,et al.  Post buckling of micromachined beams , 1994 .

[18]  Suman Singh,et al.  Sensors--an effective approach for the detection of explosives. , 2007, Journal of hazardous materials.

[19]  G. Gerlach,et al.  Reduction of mechanical stress in micromachined components caused by humidity-induced volume expansion of polymer layers , 1998 .

[20]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[21]  Thomas Thundat,et al.  Trace explosive detection using photothermal deflection spectroscopy , 2008 .

[22]  Panos G. Datskos,et al.  Detection of Explosive Compounds with the Use of Microcantilevers with Nanoporous Coatings , 2003 .

[23]  Yee Lam,et al.  Using microcantilever deflection to detect HIV-1 envelope glycoprotein gp120. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[24]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[25]  Ali H. Nayfeh,et al.  Exact solution and stability of postbuckling configurations of beams , 2008 .

[26]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[27]  M. N. Wybourne,et al.  Elastic instability of nanomechanical beams , 2002 .

[28]  Silvan Schmid,et al.  Influence of air humidity on polymeric microresonators , 2009 .

[29]  Oliver Ambacher,et al.  Nanoelectromechanical devices for sensing applications , 2007 .

[30]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[31]  Silvan Schmid,et al.  Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams , 2008 .

[32]  Ali H. Nayfeh,et al.  Investigation of Natural Frequencies and Mode Shapes of Buckled Beams , 1995 .

[33]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.