Generalized Mean Curvature Flow in Carnot Groups

In this paper we study the generalized mean curvature flow of sets in the sub-Riemannian geometry of Carnot groups. We extend to our context the level sets method and the weak (viscosity) solutions introduced in the Euclidean setting in [4] and [12]. We establish two special cases of the comparison principle, existence, uniqueness and basic geometric properties of the flow.

[1]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[2]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[3]  M. Derridj Sur un théorème de traces , 1972 .

[4]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[5]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[6]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[7]  Elias M. Stein,et al.  Hardy spaces on homogeneous groups , 1982 .

[8]  J. Mitchell On Carnot-Carathéodory metrics , 1985 .

[9]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[10]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[11]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[12]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[13]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[14]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[15]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[16]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[17]  T. Ilmanen Generalized flow of sets by mean curvature on a manifold , 1992 .

[18]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[19]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[20]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[21]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[22]  Hitoshi Ishii,et al.  Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor , 1995 .

[23]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[24]  Nicola Garofalo,et al.  ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .

[25]  M. Crandall Viscosity solutions: A primer , 1997 .

[26]  M. Novaga,et al.  Minimal barriers for geometric evolutions , 1997 .

[27]  M. Novaga,et al.  Comparison results between minimal barriers and viscosity solutions for geometric evolutions , 1998 .

[28]  G. Barles,et al.  A New Approach to Front Propagation Problems: Theory and Applications , 1998 .

[29]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[30]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[31]  F. S. Cassano,et al.  Surface measures in Carnot-Carathéodory spaces , 2001 .

[32]  Scott D. Pauls,et al.  The Bernstein Problem in the Heisenberg Group , 2002 .

[33]  Xi-Ping Zhu,et al.  Lectures on Mean Curvature Flows , 2002 .

[34]  Thomas Bieske,et al.  ON ∞-HARMONIC FUNCTIONS ON THE HEISENBERG GROUP , 2002 .

[35]  Nizar Touzi,et al.  A STOCHASTIC REPRESENTATION FOR THE LEVEL SET EQUATIONS , 2002 .

[36]  Z. Balogh Size of characteristic sets and functions with prescribed gradient , 2003 .

[37]  Juan J. Manfredi,et al.  Convex functions on the Heisenberg group , 2003 .

[38]  Changyou Wang The Aronsson equation for absolute minimizers of ${L^\infty}$-functionals associated with vector fields satisfying Hörmander's condition , 2003 .

[39]  Changyou Wang Viscosity convex functions on carnot groups , 2003, math/0309079.

[40]  A. Sarti,et al.  From neural oscillations to variational problems in the visual cortex , 2003, Journal of Physiology-Paris.

[41]  Klaus Ecker,et al.  Regularity Theory for Mean Curvature Flow , 2003 .

[42]  Z. Balogh,et al.  Regularity of convex functions on Heisenberg groups , 2003 .

[43]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[44]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[45]  Paul Yang,et al.  Minimal surfaces in pseudohermitian geometry , 2004, math/0401136.

[46]  Yi Ni Sub-Riemannian constant mean curvature surfaces in the Heisenberg group as limits , 2004 .

[47]  Scott D. Pauls Minimal Surfaces in the Heisenberg Group , 2004 .

[48]  Thomas Bieske COMPARISON PRINCIPLE FOR PARABOLIC EQUATIONS IN THE HEISENBERG GROUP , 2005 .

[49]  Manuel Ritoré,et al.  Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn , 2005, math/0504439.

[50]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[51]  Scott D. Pauls,et al.  Constant mean curvature surfaces in sub-Riemannian geometry , 2005 .

[52]  Paul Yang,et al.  Existence and uniqueness for P-area minimizers in the Heisenberg group , 2006 .

[53]  D. Danielli,et al.  Sub-Riemannian calculus on hypersurfaces in Carnot groups , 2006 .

[54]  Valentino Magnani Characteristic points, rectifiability and perimeter measure on stratified groups , 2006 .

[55]  F. S. Cassano,et al.  The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations , 2006 .

[56]  D. N. D. M. Danielli,et al.  A Notable Family of Entire Intrinsic Minimal Graphs in the Heisenberg Group which are not Perimeter Minimizing , 2006 .

[57]  V. Magnani,et al.  Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions , 2006 .

[58]  Scott D. Pauls,et al.  An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem , 2007 .

[59]  Nicolas Dirr,et al.  Evolution by mean curvature in sub-Riemannian geometries: A stochastic approach , 2008 .

[60]  Scott D. Pauls,et al.  Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model , 2009, Journal of Mathematical Imaging and Vision.

[61]  Nicolas Dirr,et al.  Evolution by mean curvature flow in sub-Riemannian geometries:A stochastic approach , 2009 .

[62]  S. Pauls,et al.  Convexity and horizontal second fundamental forms for hypersurfaces in Carnot groups , 2010 .