Near Field Coupling in Passive and Active Terahertz Metamaterial Devices

A wide variety of optical phenomena rely on the near field manipulation and confinement of electromagnetic field in subwavelength metallic and dielectric resonators with applications ranging from the design of micro and nano scale photonic devices to super lenses and ultrasensitive sensors. In this invited paper, we present a discussion on controlling the metamaterial properties by active and passive manipulation of near field coupling in an array of split ring resonators. We show that near field coupling between the meta-atoms could lead to resonance tuning, mode splitting, and ultrafast switching in passive and active resonators. The near field coupling schemes discussed here demonstrate the application possibilities of such structures towards the design of active switches, amplitude modulators, frequency agile behaviors, and slow light devices, particularly for the terahertz frequency regime, which still suffers from the shortage of practical devices required to bridge the so called “THz gap”.

[1]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[2]  Abul K. Azad,et al.  Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators , 2008 .

[3]  Zhen Tian,et al.  Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Terahertz Metamaterial , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Carsten Rockstuhl,et al.  Strong influence of packing density in terahertz metamaterials , 2010 .

[5]  Zhen Tian,et al.  Random terahertz metamaterials , 2010 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[8]  Abul K. Azad,et al.  Dynamically reconfigurable terahertz metamaterial through photo- doped semiconductor , 2011 .

[9]  Zhen Tian,et al.  Terahertz superconductor metamaterial , 2010 .

[10]  R. Morandotti,et al.  Enhanced Q-factor in Optimally Coupled Macrocell THz Metamaterials: Effect of Spatial Arrangement , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[12]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[13]  Carsten Rockstuhl,et al.  Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials , 2012 .

[14]  Ewold Verhagen,et al.  Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. , 2009, Physical review letters.

[15]  M. Kafesaki,et al.  Multi-gap individual and coupled split-ring resonator structures. , 2008, Optics express.

[16]  D. R. Chowdhury,et al.  Tailored resonator coupling for modifying the terahertz metamaterial response. , 2011, Optics express.

[17]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[18]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[19]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[20]  Yuri S. Kivshar,et al.  Metamaterial tuning by manipulation of near-field interaction , 2009, 0912.1152.

[21]  T. Feurer,et al.  Lattice modes mediate radiative coupling in metamaterial arrays. , 2009, Optics express.

[22]  David J. Edwards,et al.  Coupling mechanisms for split ring resonators: Theory and experiment , 2007 .

[23]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[24]  Abul K. Azad,et al.  Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials , 2011 .

[25]  Harald Giessen,et al.  Three-dimensional photonic metamaterials at optical frequencies. , 2008, Nature materials.

[26]  D. R. Chowdhury,et al.  Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial , 2013 .

[27]  Zhen Tian,et al.  Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode , 2012 .

[28]  Ekaterina Shamonina,et al.  Analytical formulation for the resonant frequency of split rings , 2009 .

[29]  Carsten Rockstuhl,et al.  The impact of nearest neighbor interaction on the resonances in terahertz metamaterials , 2009 .

[30]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[31]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[32]  F. Lederer,et al.  Analogue of electromagnetically induced transparency in a terahertz metamaterial , 2009, 0907.1937.

[33]  Richard D. Averitt,et al.  TOPICAL REVIEW: Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials , 2002 .

[34]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[35]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[36]  A. Bitzer,et al.  Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study. , 2011, Optics express.

[37]  Kurt Busch,et al.  Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation. , 2010, Optics express.

[38]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[39]  W. Marsden I and J , 2012 .

[40]  Weili Zhang,et al.  Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation , 2013 .

[41]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[42]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[43]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[44]  Andreas Tünnermann,et al.  Effective properties of amorphous metamaterials , 2009 .

[45]  Xuhuai Zhang,et al.  Optical Negative Index Metamaterials. , 2011 .

[46]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[47]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[48]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[49]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[50]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[51]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[52]  Weili Zhang,et al.  Optically thin terahertz metamaterials. , 2008, Optics express.

[53]  D. R. Chowdhury,et al.  A broadband planar terahertz metamaterial with nested structure. , 2011, Optics express.