Comprehensive Analysis of Long Non-Coding RNAs in Ovarian Cancer Reveals Global Patterns and Targeted DNA Amplification

Long non-coding RNAs (lncRNAs) are emerging as potent regulators of cell physiology, and recent studies highlight their role in tumor development. However, while established protein-coding oncogenes and tumor suppressors often display striking patterns of focal DNA copy-number alteration in tumors, similar evidence is largely lacking for lncRNAs. Here, we report on a genomic analysis of GENCODE lncRNAs in high-grade serous ovarian adenocarcinoma, based on The Cancer Genome Atlas (TCGA) molecular profiles. Using genomic copy-number data and deep coverage transcriptome sequencing, we derived dual copy-number and expression data for 10,419 lncRNAs across 407 primary tumors. We describe global correlations between lncRNA copy-number and expression, and associate established expression subtypes with distinct lncRNA signatures. By examining regions of focal copy-number change that lack protein-coding targets, we identified an intergenic lncRNA on chromosome 1, OVAL, that shows narrow focal genomic amplification in a subset of tumors. While weakly expressed in most tumors, focal amplification coincided with strong OVAL transcriptional activation. Screening of 16 other cancer types revealed similar patterns in serous endometrial carcinomas. This shows that intergenic lncRNAs can be specifically targeted by somatic copy-number amplification, suggestive of functional involvement in tumor initiation or progression. Our analysis provides testable hypotheses and paves the way for further study of lncRNAs based on TCGA and other large-scale cancer genomics datasets.

[1]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[2]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[3]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[4]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[5]  Debora S. Marks,et al.  miRcode: a map of putative microRNA target sites in the long non-coding transcriptome , 2012, Bioinform..

[6]  N. Caplen,et al.  Pvt1-encoded microRNAs in oncogenesis , 2008, Retrovirology.

[7]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[8]  Andrew H. Beck,et al.  Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers , 2012, Genome Biology.

[9]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[10]  Jiayi Wang,et al.  CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer , 2010, Nucleic acids research.

[11]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[12]  C. Carlotti,et al.  Novel Primate-Specific Genes, RMEL 1, 2 and 3, with Highly Restricted Expression in Melanoma, Assessed by New Data Mining Tool , 2010, PloS one.

[13]  Carolyn J. Brown,et al.  A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome , 1991, Nature.

[14]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[15]  J. Borén,et al.  Filamin a mediates HGF/c‐MET signaling in tumor cell migration , 2011, International journal of cancer.

[16]  Xiongfei Xu,et al.  The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ , 2011, Nature Immunology.

[17]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[18]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[19]  E. Lengyel Ovarian cancer development and metastasis. , 2010, The American journal of pathology.

[20]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[21]  R. Stephens,et al.  The Identification of MicroRNAs in a Genomically Unstable Region of Human Chromosome 8q24 , 2008, Molecular Cancer Research.

[22]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[23]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[24]  Xu Li,et al.  UCA1, a non‐protein‐coding RNA up‐regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion , 2008, FEBS letters.

[25]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[26]  James B. Brown,et al.  Long noncoding RNAs are rarely translated in two human cell lines , 2012, Genome research.

[27]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[28]  H. Kanamori,et al.  Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction , 2012, BMC Plant Biology.

[29]  Howard Y. Chang,et al.  Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis , 2010, Nature.

[30]  Emily A. Vucic,et al.  Human Cancer Long Non-Coding RNA Transcriptomes , 2011, PloS one.

[31]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[32]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[33]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[34]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[35]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[36]  David Malkin,et al.  Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. , 2010, Cancer research.

[37]  P. Robson,et al.  Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. , 2010, RNA.

[38]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[39]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[40]  L. Maquat,et al.  lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements , 2010, Nature.

[41]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[42]  E. Larsson,et al.  The Non-Coding Oncogene: A Case of Missing DNA Evidence? , 2012, Front. Gene..

[43]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[44]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[45]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Y. Kim,et al.  Identification of differentially expressed genes using an annealing control primer system in stage III serous ovarian carcinoma , 2010, BMC Cancer.

[47]  R. Kempson,et al.  Uterine papillary serous carcinoma: A highly malignant form of endometrial adenocarcinoma , 1982, The American journal of surgical pathology.

[48]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[49]  John T. Wei,et al.  Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression , 2011, Nature Biotechnology.

[50]  A. Chinnaiyan,et al.  The emergence of lncRNAs in cancer biology. , 2011, Cancer discovery.

[51]  Kotb Abdelmohsen,et al.  LincRNA-p21 suppresses target mRNA translation. , 2012, Molecular cell.

[52]  E. Dees,et al.  The product of the H19 gene may function as an RNA , 1990, Molecular and cellular biology.

[53]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[54]  J. Bishop,et al.  The PVT gene frequently amplifies with MYC in tumor cells , 1989, Molecular and cellular biology.

[55]  Wen-Lin Kuo,et al.  Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer , 2007, Clinical Cancer Research.

[56]  R. Tothill,et al.  Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome , 2008, Clinical Cancer Research.

[57]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[58]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[59]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.