Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines

[1]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[2]  C. Tung,et al.  A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex. , 2013, Chemistry.

[3]  A. Lei,et al.  Synthetic applications of photoredox catalysis with visible light. , 2013, Organic & biomolecular chemistry.

[4]  Davide Ravelli,et al.  Photoorganocatalysis. What for? , 2013, Chemical Society reviews.

[5]  K. Ohkubo,et al.  Selective photocatalytic reactions with organic photocatalysts , 2013 .

[6]  C. Tung,et al.  Graphene-supported RuO2 nanoparticles for efficient aerobic cross-dehydrogenative coupling reaction in water. , 2012, Organic letters.

[7]  Lei Shi,et al.  Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. , 2012, Chemical Society reviews.

[8]  Ming Hu,et al.  Direct α-arylation of α-amino carbonyl compounds with indoles using visible light photoredox catalysis. , 2012, The Journal of organic chemistry.

[9]  G. Zou,et al.  Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal , 2012 .

[10]  M. Antonietti,et al.  Carbon Nitride‐Catalyzed Photoredox C ? C Bond Formation with N‐Aryltetrahydroisoquinolines , 2012 .

[11]  Wen-Jing Xiao,et al.  Visible-light photoredox catalysis. , 2012, Angewandte Chemie.

[12]  W. Xiao,et al.  Photoredoxkatalyse mit sichtbarem Licht , 2012 .

[13]  H. Kisch,et al.  Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide. , 2012, Organic & biomolecular chemistry.

[14]  David C. Fabry,et al.  Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions--C-C bond formation using visible light. , 2012, Chemistry.

[15]  Y. Chi,et al.  Enantioselective oxidative cross-dehydrogenative coupling of tertiary amines to aldehydes. , 2012, Angewandte Chemie.

[16]  David C. Fabry,et al.  Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions. , 2012, Chemistry.

[17]  M. Klussmann,et al.  A comparative mechanistic study of Cu-catalyzed oxidative coupling reactions with N-phenyltetrahydroisoquinoline. , 2012, Journal of the American Chemical Society.

[18]  Wei Yu,et al.  Synthesis of oxindoles via visible light photoredox catalysis. , 2012, Organic & biomolecular chemistry.

[19]  C. Tung,et al.  Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. , 2012, Chemistry.

[20]  Corey R J Stephenson,et al.  Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. , 2012, Organic letters.

[21]  K. Loh,et al.  Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light , 2011 .

[22]  Magnus Rueping,et al.  Visible-light photoredox catalyzed oxidative Strecker reaction. , 2011, Chemical communications.

[23]  Rui Wang,et al.  Catalytic asymmetric activation of a C(sp³)-H bond adjacent to a nitrogen atom: a versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. , 2011, Angewandte Chemie.

[24]  Durga Prasad Hari,et al.  Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. , 2011, Organic letters.

[25]  Carlos Vila,et al.  Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. , 2011, Chemical communications.

[26]  J. Xie,et al.  Cross-dehydrogenative coupling reactions by transition-metal and aminocatalysis for the synthesis of amino acid derivatives. , 2010, Angewandte Chemie.

[27]  L. Gong,et al.  Enantioselective oxidative cross-coupling reaction of 3-indolylmethyl C-H bonds with 1,3-dicarbonyls using a chiral Lewis acid-bonded nucleophile to control stereochemistry. , 2010, Angewandte Chemie.

[28]  C. Stephenson,et al.  Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization. , 2010, Journal of the American Chemical Society.

[29]  K. Zeitler Photoredox catalysis with visible light. , 2009, Angewandte Chemie.

[30]  Kirsten Zeitler Photoredoxkatalyse mit sichtbarem Licht , 2009 .

[31]  Chao‐Jun Li,et al.  Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C–H bond functionalization , 2009, Proceedings of the National Academy of Sciences.

[32]  J. Zweier,et al.  Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide. 4. Conformational effects on the EPR hyperfine splitting constants. , 2008, The journal of physical chemistry. A.

[33]  Chao‐Jun Li,et al.  Functionalizing glycine derivatives by direct C-C bond formation. , 2008, Angewandte Chemie.

[34]  T. Nakae,et al.  Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. , 2008, Journal of the American Chemical Society.

[35]  Chao‐Jun Li,et al.  Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds. , 2006, Angewandte Chemie.

[36]  Chao‐Jun Li,et al.  Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds , 2005 .

[37]  Chao‐Jun Li,et al.  Highly efficient copper-catalyzed nitro-Mannich type reaction: cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond. , 2005, Journal of the American Chemical Society.

[38]  Chao‐Jun Li,et al.  CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. , 2004, Journal of the American Chemical Society.

[39]  M. O'donnell,et al.  The enantioselective synthesis of alpha-amino acids by phase-transfer catalysis with achiral Schiff base esters. , 2004, Accounts of chemical research.

[40]  P. Knochel,et al.  Eine enantioselektive, Kupfer(I)‐katalysierte Drei‐Komponenten‐Reaktion zur Synthese von Propargylaminen , 2003 .

[41]  P. Knochel,et al.  Enantioselective, copper(I)-catalyzed three-component reaction for the preparation of propargylamines. , 2003, Angewandte Chemie.

[42]  Jun-An Ma Neuere Entwicklungen in der katalytischen asymmetrischen Synthese von α‐ und β‐Aminosäuren , 2003 .

[43]  Jun‐An Ma Recent Developments in the Catalytic Asymmetric Synthesis of α‐ and β‐Amino Acids , 2003 .

[44]  K. Maruoka,et al.  Enantioselective amino acid synthesis by chiral phase-transfer catalysis. , 2003, Chemical reviews.

[45]  Mi‐jeong Kim,et al.  Highly enantioselective and practical cinchona-derived phase-transfer catalysts for the synthesis of alpha-amino acids. , 2002, Angewandte Chemie.

[46]  Jing-quan Zhao,et al.  Effect of Structural Modification on Photodynamic Activity of Hypocrellins , 2001, Photochemistry and photobiology.

[47]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[48]  T. Wirth New Strategies to a-Alkylated a-Amino Acids. , 1997 .

[49]  T. Wirth Neue Strategien zu α‐alkylierten α‐Aminosäuren , 1997 .

[50]  Y. Ohfune Stereoselective Routes Toward the Synthesis of Unusual Amino Acids , 1992 .

[51]  D. Reitz,et al.  Metalation and electrophilic substitution of amine derivatives adjacent to nitrogen: .alpha.-metallo amine synthetic equivalents , 1984 .

[52]  Ivar Ugi,et al.  The α‐Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions , 1962 .

[53]  I. Ugi,et al.  Neuere Methoden der präparativen organischen Chemie IV Mit Sekundär‐Reaktionen gekoppelte α‐Additionen von Immonium‐Ionen und Anionen an Isonitrile , 1962 .

[54]  Carl-Johan Wallentin,et al.  Radical carbon-carbon bond formations enabled by visible light active photocatalysts. , 2012, Chimia.

[55]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.