Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: Application to the calibration of the Sacramento soil‐moisture accounting model

[1] An innovative algorithm, shuffled complexes with principal components analysis (SP-UCI), is developed to overcome a critical deficiency of the shuffled complex evolution scheme: population degeneration. Population degeneration means that, during the evolutionary search process, the population of search particles may degenerate into a subspace of the full parameter space, thereby missing the capacity of fully exploring the parameter space. Being confined in a subspace may even lead the particle population to converge to nonstationary points, which is a fatal malfunction. To overcome this problem, SP-UCI employs the principal components analysis to detect the occurrence of population degeneration and remedy the adverse effects. The ensemble of calibrations of the Sacramento soil moisture accounting model with the SP-UCI method over the Leaf River basin, Mississippi, retrieves the optimal parameter values with the lowest recorded root-mean-squared error of simulated daily runoff against the observation. Moreover, the result also provides consistent (narrow ranges) model parameter distribution, which results in a better understanding of the model's behavior, given the watershed's hydrologic features.

[1]  S. Sorooshian,et al.  Uniqueness and observability of conceptual rainfall‐runoff model parameters: The percolation process examined , 1983 .

[2]  Tom G. Chapman,et al.  Comment on Evaluation of automated techniques for base flow and recession analyses by R. J. Nathan , 1991 .

[3]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[4]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[5]  G. Dunteman Principal Components Analysis , 1989 .

[6]  T. McMahon,et al.  Evaluation of automated techniques for base flow and recession analyses , 1990 .

[7]  Stephen J. Burges,et al.  An assessment of a conceptual rainfall‐runoff model's ability to represent the dynamics of small hypothetical catchments: 2. Hydrologic responses for normal and extreme rainfall , 1990 .

[8]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[9]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[10]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[11]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[12]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[13]  S. Sorooshian,et al.  Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.

[14]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[15]  Larry Brazil,et al.  Multilevel calibration strategy for complex hydrologic simulation models , 1988 .

[16]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[17]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[18]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[19]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[20]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[21]  S. Sorooshian,et al.  The Automatic Calibration of Conceptual Catchment Models Using Derivative‐Based Optimization Algorithms , 1985 .

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  S. Burges,et al.  An assessment of a conceptual rainfall‐runoff model's ability to represent the dynamics of small hypothetical catchments: 1. Models, model properties, and experimental design , 1990 .

[24]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[25]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.