On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods
暂无分享,去创建一个
[1] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[2] Margaret H. Wright,et al. Interior methods for constrained optimization , 1992, Acta Numerica.
[3] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[4] Yurii Nesterov,et al. Long-step strategies in interior-point primal-dual methods , 1997, Math. Program..
[5] M. Todd,et al. Mathematical Developments Arising from Linear Programming , 1990 .
[6] Michael J. Todd,et al. On Adjusting Parameters in Homotopy Methods for Linear Programming , 1996 .
[7] M. Koecher,et al. Positivitatsbereiche Im R n , 1957 .
[8] K. Tanabe. A geometric method in nonlinear programming , 1980 .
[9] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[10] Osman Güler,et al. Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..
[11] Michael J. Todd,et al. Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems , 1999, Math. Program..
[12] S. Helgason. Differential Geometry and Symmetric Spaces , 1964 .
[13] O. Rothaus. Domains of Positivity , 1958 .