On Round-Robin Tournaments with a Unique Maximum Score

Richard Arnold Epstein (1927-2016) published the first edition of"The Theory of Gambling and Statistical Logic"in 1967. He introduced some material on round-robin tournaments (complete oriented graphs) with n labeled vertices in Chapter 9; in particular, he stated, without proof, that the probability that there is a unique vertex with the maximum score tends to one as n tends to infinity. Our object here is to give a proof of this result along with some historical remarks and comments.

[1]  Y. Rinott,et al.  On Tournaments and negative dependence , 2022, Journal of Applied Probability.

[2]  Y. Malinovsky A note on the distribution of the extreme degrees of a random graph via the Stein-Chen method , 2022, 2204.05881.

[3]  P. Stockmeyer Counting Various Classes of Tournament Score Sequences , 2022, 2202.05238.

[4]  Y. Malinovsky,et al.  On the distribution of winners’ scores in a round-robin tournament , 2021, Probability in the Engineering and Informational Sciences.

[5]  D. Aldous,et al.  To stay discovered: On tournament mean score sequences and the Bradley–Terry model , 2018, Stochastic Processes and their Applications.

[6]  Andrzej Rucinski,et al.  Random graphs , 2006, SODA.

[7]  M. Karonski Random graphs , 1996 .

[8]  M. Jacob A personal communication , 1989 .

[9]  A. Burton,et al.  [Book review]. , 1987, Bulletin de la Societe de pathologie exotique.

[10]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[11]  R. Guy A Pentagonal Pot-Pourri of Perplexing Problems, Primarily Probabilistic , 1984 .

[12]  Paul Erdös,et al.  On the chromatic index of almost all graphs , 1977, J. Comb. Theory, Ser. B.

[13]  G. I. Ivchenko On the Asymptotic Behavior of Degrees of Vertices in a Random Graph , 1973 .

[14]  R. Epstein The Theory of Gambling and Statistical Logic , 1968 .

[15]  P. J. Huber A Remark on a Paper of Trawinski and David Entitled: "Selection of the Best Treatment in a paired-Comparison Experiment" , 1963 .

[16]  H. A. David TOURNAMENTS AND PAIRED COMPARISONS , 1959 .

[17]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[18]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[19]  J. Moon,et al.  On the negative dependence inequalities and maximal score in round-robin tournament , 2021 .

[20]  Thomas Augustin,et al.  Foundations of Probability , 2011, International Encyclopedia of Statistical Science.

[21]  P. Atzberger The Monte-Carlo Method , 2006 .

[22]  Béla Bollobás,et al.  Degree sequences of random graphs , 1981, Discret. Math..

[23]  J. Moon Topics on tournaments , 1968 .