Random walks and random numbers from supercontinuum generation.

We report a numerical study showing how the random intensity and phase fluctuations across the bandwidth of a broadband optical super-continuum can be interpreted in terms of the random processes of random walks and Lévy flights. We also describe how the intensity fluctuations can be applied to physical random number generation. We conclude that the optical supercontinuum provides a highly versatile means of studying and generating a wide class of random processes at optical wavelengths.

[1]  B. Eggleton,et al.  Direct detection of optical rogue wave energy statistics in supercontinuum generation , 2009 .

[2]  Michael H Frosz,et al.  Validation of input-noise model for simulations of supercontinuum generation and rogue waves. , 2010, Optics express.

[3]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[4]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[5]  C. Finot,et al.  Extreme statistics in Raman fiber amplifiers: From analytical description to experiments , 2011 .

[6]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.

[7]  Miro Erkintalo,et al.  On the statistical interpretation of optical rogue waves , 2010, 1007.2782.

[8]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.

[9]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[10]  Rajarshi Roy,et al.  Scalable parallel physical random number generator based on a superluminescent LED. , 2011, Optics letters.

[11]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[12]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[13]  J. Taylor,et al.  Ten years of nonlinear optics in photonic crystal fibre , 2009 .

[14]  G M Morris,et al.  Optical random number generator based on photoevent locations. , 1991, Applied optics.

[15]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[16]  P. Barthelemy,et al.  A Lévy flight for light , 2008, Nature.

[17]  M. Shlesinger,et al.  Above, below and beyond Brownian motion , 1999 .

[18]  Martine Chevrollier,et al.  Lévy flights of photons in hot atomic vapours , 2009, 0904.2454.

[19]  G. Weiss,et al.  Random Walks: Theory and Selected Applications , 2007 .

[20]  Ozdal Boyraz,et al.  Fiber parametric amplifiers for wavelength band conversion , 2002 .

[21]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[24]  Efim Pelinovsky,et al.  Editorial – Introductory remarks on “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?” , 2010 .

[25]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[26]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[27]  Pu Li,et al.  All-optical fast random number generator. , 2010, Optics express.

[28]  Ablowitz,et al.  Numerically induced chaos in the nonlinear Schrödinger equation. , 1989, Physical review letters.

[29]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[30]  Ming-Jun Li,et al.  Supercontinuum generation in optical fibers , 2007, SPIE/OSA/IEEE Asia Communications and Photonics.

[31]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[32]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .