A Faster Tight Approximation for Submodular Maximization Subject to a Knapsack Constraint

The problem of maximizing a monotone submodular function subject to a knapsack constraint admits a tight (1−e)-approximation: exhaustively enumerate over all subsets of size at most three and extend each using the greedy heuristic [Sviridenko, 2004]. We prove it suffices to enumerate only over all subsets of size at most two and still retain a tight (1 − e)-approximation. This improves the running time from O(n) to O(n) queries. The result is achieved via a refined analysis of the greedy heuristic.

[1]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[2]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[3]  A. McNabb Comparison theorems for differential equations , 1986 .

[4]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[5]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[6]  Joseph Naor,et al.  A (1-e-1-ε)-Approximation for the Monotone Submodular Multiple Knapsack Problem , 2020, ESA.

[7]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[8]  Huy L. Nguyen,et al.  A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint , 2019, ICALP.

[9]  Bhaskar Krishnamachari,et al.  Base Station Operation and User Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks , 2011, IEEE Journal on Selected Areas in Communications.

[10]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[11]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[12]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[13]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .