Guarantees of Riemannian Optimization for Low Rank Matrix Recovery

We establish theoretical recovery guarantees of a family of Riemannian optimization algorithms for low rank matrix recovery, which is about recovering an $m\times n$ rank $r$ matrix from $p < mn$ number of linear measurements. The algorithms are first interpreted as iterative hard thresholding algorithms with subspace projections. Based on this connection, we show that provided the restricted isometry constant $R_{3r}$ of the sensing operator is less than $C_\kappa /\sqrt{r}$, the Riemannian gradient descent algorithm and a restarted variant of the Riemannian conjugate gradient algorithm are guaranteed to converge linearly to the underlying rank $r$ matrix if they are initialized by one step hard thresholding. Empirical evaluation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements necessary.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Holger Rauhut,et al.  Stable low-rank matrix recovery via null space properties , 2015, ArXiv.

[3]  Jeffrey D. Blanchard,et al.  CGIHT: Conjugate Gradient Iterative Hard Thresholding for Compressed Sensing and Matrix Completion , 2015 .

[4]  Shiqian Ma,et al.  Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..

[5]  Yousef Saad,et al.  Scaled Gradients on Grassmann Manifolds for Matrix Completion , 2012, NIPS.

[6]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[7]  J. Tanner,et al.  Low rank matrix completion by alternating steepest descent methods , 2016 .

[8]  Sujay Sanghavi,et al.  The Local Convexity of Solving Systems of Quadratic Equations , 2015, 1506.07868.

[9]  Bamdev Mishra,et al.  A Riemannian geometry for low-rank matrix completion , 2012, ArXiv.

[10]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[11]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[12]  Jared Tanner,et al.  Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..

[13]  Pierre-Antoine Absil,et al.  Robust Low-Rank Matrix Completion by Riemannian Optimization , 2016, SIAM J. Sci. Comput..

[14]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[15]  Christopher De Sa,et al.  Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems , 2014, ICML.

[16]  Justin P. Haldar,et al.  Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization , 2009, IEEE Signal Processing Letters.

[17]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[18]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[19]  Anastasios Kyrillidis,et al.  Dropping Convexity for Faster Semi-definite Optimization , 2015, COLT.

[20]  T. Zhao,et al.  Nonconvex Low Rank Matrix Factorization via Inexact First Order Oracle , 2015 .

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  Prateek Jain,et al.  Fast Exact Matrix Completion with Finite Samples , 2014, COLT.

[23]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[24]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[25]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[26]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[27]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[28]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[29]  Joel A. Tropp,et al.  Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.

[30]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[31]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[32]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[33]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[34]  Jared Tanner,et al.  Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing , 2015, IEEE Transactions on Signal Processing.

[35]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[36]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[37]  Weiyu Xu,et al.  Null space conditions and thresholds for rank minimization , 2011, Math. Program..

[38]  Raghunandan H. Keshavan Efficient algorithms for collaborative filtering , 2012 .

[39]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[40]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[41]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[42]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[43]  Bamdev Mishra,et al.  Fixed-rank matrix factorizations and Riemannian low-rank optimization , 2012, Comput. Stat..

[44]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[45]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[46]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[47]  Bamdev Mishra,et al.  Riemannian Preconditioning , 2014, SIAM J. Optim..

[48]  Babak Hassibi,et al.  New Null Space Results and Recovery Thresholds for Matrix Rank Minimization , 2010, ArXiv.

[49]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[50]  Ke Wei Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study , 2015 .

[51]  Bamdev Mishra,et al.  R3MC: A Riemannian three-factor algorithm for low-rank matrix completion , 2013, 53rd IEEE Conference on Decision and Control.

[52]  E.J. Candes Compressive Sampling , 2022 .

[53]  Lars Elden,et al.  Matrix methods in data mining and pattern recognition , 2007, Fundamentals of algorithms.

[54]  Shimon Ullman,et al.  Uncovering shared structures in multiclass classification , 2007, ICML '07.

[55]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[56]  Massimiliano Pontil,et al.  Multi-Task Feature Learning , 2006, NIPS.

[57]  Volkan Cevher,et al.  Matrix Recipes for Hard Thresholding Methods , 2012, Journal of Mathematical Imaging and Vision.

[58]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[59]  T. Chan,et al.  Guarantees of riemannian optimization for low rank matrix completion , 2016, Inverse Problems & Imaging.

[60]  Jared Tanner Efficient algorithms for compressed sensing and matrix completion , 2014 .

[61]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[62]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Nonconvex Factorization , 2015, FOCS.

[63]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, ISIT.