Dielectric properties of Ti4+/Zr4+ modified the SrCeO3-based microwave ceramic systems

[1]  B. Jin,et al.  Design of a Sub-6 GHz Dielectric Resonator Antenna with Novel Temperature-Stabilized (Sm1-xBix)NbO4 (x = 0-0.15) Microwave Dielectric Ceramics. , 2022, ACS applied materials & interfaces.

[2]  Lin-lin Zhu,et al.  Fabrication and characterization of highly transparent ZrO2-doped Tm2O3 ceramics , 2021 .

[3]  Pamu Dobbidi,et al.  Structural, electrical properties and stability in microwave dielectric properties of (1−x) MgTiO3-x SrTiO3 composite ceramics , 2021 .

[4]  Mingkai Li,et al.  BeCaZnO quaternary alloy: thin films and ultraviolet photodetectors , 2021 .

[5]  W. Lei,et al.  Impedance spectroscopy, B-site cation ordering and structure–property relations of (1 − x) La[Al0.9(Mg0.5Ti0.5)0.1]O3–x CaTiO3 ceramics for 5G dielectric waveguide filters , 2021 .

[6]  Ge Wang,et al.  Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas , 2020, Journal of the European Ceramic Society.

[7]  Junming Xu,et al.  The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application , 2020 .

[8]  Yingchun Zhang,et al.  Microwave dielectric properties of temperature stable MO-ZrO2-Ta2O5 ceramics , 2019, Journal of Alloys and Compounds.

[9]  L. Pang,et al.  Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications , 2019, Journal of the European Ceramic Society.

[10]  Xiuli Chen,et al.  A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature , 2019, Journal of the European Ceramic Society.

[11]  R. Zuo,et al.  A novel ultralow-loss Sr2CeO4 microwave dielectric ceramic and its property modification , 2019, Journal of the European Ceramic Society.

[12]  Dawei Wang,et al.  Microwave dielectric properties of temperature‐stable zircon‐type (Bi, Ce)VO 4 solid solution ceramics , 2019, Journal of the American Ceramic Society.

[13]  W. Lei,et al.  Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios , 2018 .

[14]  Lin Gan,et al.  Correlation between vibrational modes of A-site ions and microwave dielectric properties in (1−x) CaTiO3−x (Li0.5Sm0.5)TiO3 ceramics , 2017 .

[15]  H. T. Wu,et al.  Relationships between crystal structure and microwave dielectric properties of Li2(Mg1−xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics , 2017 .

[16]  Sea-Fue Wang,et al.  Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics , 2017 .

[17]  R. Zuo,et al.  Structure, Microwave Dielectric Properties, and Low‐Temperature Sintering of Acceptor/Donor Codoped Li2Ti1−x(Al0.5Nb0.5)xO3 Ceramics , 2016 .

[18]  V. Itin,et al.  Effect of heat treatment on the structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion , 2016 .

[19]  Lingxia Li,et al.  Microwave dielectric properties of novel temperature stable high Q MgZr1+xNb2O8+2x ceramics , 2015 .

[20]  Fei Sun,et al.  Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops , 2015 .

[21]  V. Murthy,et al.  Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−xSrxMoO4 ceramics with scheelite structure , 2014 .

[22]  V. Thangadurai,et al.  Thermochemistry of Sr2Ce(1-x)Pr(x)O4 (x = 0, 0.2, 0.5, 0.8, and 1): variable-temperature and -atmosphere in-situ and ex-situ powder X-ray diffraction studies and their physical properties. , 2012, Inorganic chemistry.

[23]  D. Pradhan,et al.  Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3 , 2011 .

[24]  Hongchao Wu,et al.  Microwave Dielectric Properties of Ba2Ca1−xSrxWO6Double Perovskites , 2011 .

[25]  Rajiv Ranjan,et al.  Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3 ceramics , 2011 .

[26]  H. Fan,et al.  Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures , 2011 .

[27]  H. Ho,et al.  Microwave dielectric in the Sm(Co1/2Ti1/2)O3–CaTiO3 ceramic system with near-zero temperature coefficient with resonant frequency , 2010 .

[28]  R. Choudhary,et al.  Impedance spectroscopy study of NaBa2V5O15 ceramic , 2007 .

[29]  Chung‐Hsin Lu,et al.  Luminescent characteristics and microstructures of Sr2CeO4 phosphors prepared via sol–gel and solid-state reaction routes , 2007 .

[30]  Longtu Li,et al.  Effects of octahedral thickness variance on the temperature coefficient of resonant frequency of the B-site deficient hexagonal perovskites , 2007 .

[31]  N. Alford,et al.  Microwave Dielectric Loss of Titanium Oxide , 2000 .

[32]  F. Berkel,et al.  Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes , 1996 .