Nanomedicines for kidney diseases.

[1]  L. Hsiao,et al.  Ferumoxytol-Enhanced Magnetic Resonance Imaging in Late-Stage CKD. , 2016, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[2]  N. Dudhipala,et al.  Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation , 2016, Drug delivery.

[3]  Aysu Yurdasiper,et al.  Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: polyethylene glycol versus chitosan oligosaccharide lactate , 2016, Journal of microencapsulation.

[4]  A. Domb,et al.  Antimicrobial evaluation of quaternary ammonium polyethyleneimine nanoparticles against clinical isolates of pathogenic bacteria. , 2015, IET nanobiotechnology.

[5]  Ravikumar Arvapalli,et al.  Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague–Dawley rats , 2015, Journal of Nanobiotechnology.

[6]  R. Weissleder,et al.  Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo. , 2015, ACS nano.

[7]  Samuel A Wickline,et al.  Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. , 2015, American journal of physiology. Renal physiology.

[8]  D. Heller,et al.  Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. , 2015, Nano letters.

[9]  Mark E. Davis,et al.  siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. , 2015, Nucleic acid therapeutics.

[10]  Olivier Tillement,et al.  Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. , 2015, ACS nano.

[11]  J. Kjems,et al.  Chitosan/siRNA Nanoparticles Targeting Cyclooxygenase Type 2 Attenuate Unilateral Ureteral Obstruction-induced Kidney Injury in Mice , 2015, Theranostics.

[12]  Erik I Christensen,et al.  Megalin-Mediated Specific Uptake of Chitosan/siRNA Nanoparticles in Mouse Kidney Proximal Tubule Epithelial Cells Enables AQP1 Gene Silencing , 2014, Theranostics.

[13]  K. Savalia,et al.  Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. , 2014, Free radical biology & medicine.

[14]  S. Bartz,et al.  Targeting of hepatic angiotensinogen using chemically modified siRNAs results in significant and sustained blood pressure lowering in a rat model of hypertension , 2014, Hypertension Research.

[15]  I. Macdougall,et al.  A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[16]  T. Pal,et al.  Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. , 2014, Colloids and surfaces. B, Biointerfaces.

[17]  K. Sawant,et al.  Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. , 2014, Materials science & engineering. C, Materials for biological applications.

[18]  Chen Zhou,et al.  Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology , 2013 .

[19]  Mark E. Davis,et al.  Targeting therapeutics to the glomerulus with nanoparticles. , 2013, Advances in chronic kidney disease.

[20]  A. Eisen,et al.  Nanoparticle albumin-bound paclitaxel for second-line treatment of metastatic urothelial carcinoma: a single group, multicentre, phase 2 study. , 2013, The Lancet. Oncology.

[21]  Ronnie H. Fang,et al.  A biomimetic nanosponge that absorbs pore-forming toxins , 2013, Nature nanotechnology.

[22]  Nicholas A Peppas,et al.  A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[23]  A. Ramos,et al.  A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells , 2013, PloS one.

[24]  Yun-Jaie Choi,et al.  Kidney-specific peptide-conjugated poly(ester amine) for the treatment of kidney fibrosis. , 2012, Journal of nanoscience and nanotechnology.

[25]  Y. Barenholz Doxil®--the first FDA-approved nano-drug: lessons learned. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[26]  Y. Tabata,et al.  Inflammation imaging by silica nanoparticles with antibodies orientedly immobilized , 2012, Journal of drug targeting.

[27]  H. Haick,et al.  Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. , 2012, Nanomedicine.

[28]  Mark E. Davis,et al.  Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane , 2012, Proceedings of the National Academy of Sciences.

[29]  Robert Langer,et al.  Nanoparticle delivery of cancer drugs. , 2012, Annual review of medicine.

[30]  Daniel A. Heller,et al.  Treating metastatic cancer with nanotechnology , 2011, Nature Reviews Cancer.

[31]  J. Bonventre,et al.  Cellular pathophysiology of ischemic acute kidney injury. , 2011, The Journal of clinical investigation.

[32]  R. Duncan,et al.  Nanomedicine(s) under the microscope. , 2011, Molecular pharmaceutics.

[33]  P. Ekambaram,et al.  Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril , 2011, Journal of young pharmacists : JYP.

[34]  H. Marti,et al.  Single Application of Low-Dose Mycophenolate Mofetil-OX7-Immunoliposomes Ameliorates Experimental Mesangial Proliferative Glomerulonephritis , 2011, Journal of Pharmacology and Experimental Therapeutics.

[35]  Mark E. Davis,et al.  Targeting kidney mesangium by nanoparticles of defined size , 2011, Proceedings of the National Academy of Sciences.

[36]  W. Hennink,et al.  Drug targeting to the kidney: Advances in the active targeting of therapeutics to proximal tubular cells. , 2010, Advanced drug delivery reviews.

[37]  Hak Soo Choi,et al.  Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation , 2010, Molecular imaging.

[38]  Mauro Ferrari,et al.  Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast , 2010, Nature nanotechnology.

[39]  Jin Xie,et al.  Nanoparticle-based theranostic agents. , 2010, Advanced drug delivery reviews.

[40]  N. Nishiyama,et al.  siRNA-based therapy ameliorates glomerulonephritis. , 2010, Journal of the American Society of Nephrology : JASN.

[41]  E. Pérez-Payá,et al.  A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury , 2009, PloS one.

[42]  Taeghwan Hyeon,et al.  Inorganic Nanoparticles for MRI Contrast Agents , 2009 .

[43]  Rajesh Singh,et al.  Nanoparticle-based targeted drug delivery. , 2009, Experimental and molecular pathology.

[44]  B. Pereira,et al.  Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[45]  D. Benaki,et al.  Bare and protein-conjugated Fe3O4 ferromagnetic nanoparticles for utilization in magnetically assisted hemodialysis: biocompatibility with human blood cells , 2008, Nanotechnology.

[46]  Raoul Kopelman,et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer. , 2008, Nano letters.

[47]  D. Benaki,et al.  Utilization of nanobiotechnology in haemodialysis: mock-dialysis experiments on homocysteine. , 2008, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[48]  A. Koretsky,et al.  MRI of the basement membrane using charged nanoparticles as contrast agents , 2008, Magnetic resonance in medicine.

[49]  A. Kausz,et al.  Ferumoxytol for treating iron deficiency anemia in CKD. , 2008, Journal of the American Society of Nephrology : JASN.

[50]  Igor L. Medintz,et al.  Potential clinical applications of quantum dots , 2008, International journal of nanomedicine.

[51]  R. Löbenberg,et al.  Targeted delivery of nanoparticles for the treatment of lung diseases. , 2008, Advanced drug delivery reviews.

[52]  Po-Chang Chiang,et al.  Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. , 2008, Basic & clinical pharmacology & toxicology.

[53]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[54]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[55]  P. Ramarao,et al.  Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[56]  C. Kallenberg,et al.  Site-Specific Inhibition of Glomerulonephritis Progression by Targeted Delivery of Dexamethasone to Glomerular Endothelium , 2007, Molecular Pharmacology.

[57]  L. Newman,et al.  Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. , 2007, The Surgical clinics of North America.

[58]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[59]  J F Hainfeld,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2006, The British journal of radiology.

[60]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[61]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[62]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[63]  M. Knopp,et al.  Polyamine dendrimer‐based MRI contrast agents for functional kidney imaging to diagnose acute renal failure , 2004, Journal of magnetic resonance imaging : JMRI.

[64]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[65]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[66]  Y. Tomino,et al.  Effect of Steroid-Liposome on Immunohistopathology of IgA Nephropathy in ddY Mice , 2001, Nephron.

[67]  C. Combe,et al.  Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. , 2000, Radiology.

[68]  Chad A. Mirkin,et al.  Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. , 2015, Anticancer research.

[69]  Kevin J. Kauffman,et al.  Cancer nanotherapeutics in clinical trials. , 2015, Cancer treatment and research.

[70]  R. Paulmurugan,et al.  Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[71]  P. Lu,et al.  Effect of GPE-AGT nanoparticle shRNA transfection system mediated RNAi on early atherosclerotic lesion. , 2012, International journal of clinical and experimental pathology.

[72]  M Geso,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2007, The British journal of radiology.

[73]  G. Littarru,et al.  Coenzyme Q10 in essential hypertension. , 1994, Molecular aspects of medicine.