Fast and numerically stable algorithms for discrete Hartley transforms and applications to preconditioning

The discrete Hartley transforms (DHT) of types I – IV and the related matrix algebras are discussed. We prove that any of these DHTs of length N = 2 can be factorized by means of a divide–and–conquer strategy into a product of sparse, orthogonal matrices where in this context sparse means at most two nonzero entries per row and column. The sparsity joint with orthogonality of the matrix factors is the key for proving that these new algorithms have low arithmetic costs equal to 5 2 N log2(N)+O(N) arithmetic operations and an excellent normwise numerical stability. Further, we consider the optimal Frobenius approximation of a given symmetric Toeplitz matrix generated by an integrable symbol in a Hartley matrix algebra. We give explicit formulas for computing these optimal approximations and discuss the related preconditioned conjugate gradient (PCG) iterations. By using the matrix approximation theory, we prove the strong clustering at unity of the preconditioned matrix sequences under the sole assumption of continuity and positivity of the generating function. The multilevel case is also briefly treated. Some numerical experiments concerning DHT preconditioning are included.

[1]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  Gabriele Steidl,et al.  Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems , 1998 .

[4]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[5]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[6]  G. Plonka,et al.  Fast and numerically stable algorithms for discrete cosine transforms , 2005 .

[7]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[8]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[9]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[10]  Thomas Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996, SIAM J. Matrix Anal. Appl..

[11]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .

[12]  Georg Heinig,et al.  Hartley Transform Representations of Symmetric Toeplitz Matrix Inverses with Application to Fast Matrix-Vector Multiplication , 2000, SIAM J. Matrix Anal. Appl..

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[15]  Radakovič The theory of approximation , 1932 .

[16]  Ronald N. Bracewell The Hartley transform , 1986 .

[17]  Manfred Tasche,et al.  Roundoff Error Analysis for Fast Trigonometric Transforms , 2000 .

[18]  Carmine Di Fiore,et al.  On a set of matrix algebras related to discrete Hartley-type transforms , 2003 .

[19]  Stefano Serra Capizzano,et al.  Optimal multilevel matrix algebra operators , 2000 .

[20]  Gian-Carlo Rota,et al.  Linear Operators and Approximation Theory. , 1965 .

[21]  Stefano Serra Capizzano,et al.  A unifying approach to abstract matrix algebra preconditioning , 1999, Numerische Mathematik.

[22]  T. Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996 .

[23]  Carmine Di Fiore,et al.  Matrix Algebras and Displacement Decompositions , 1999, SIAM J. Matrix Anal. Appl..

[24]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[25]  G. Anastassiou Handbook of Analytic Computational Methods in Applied Mathematics , 2000 .

[26]  Vladimir Britanak,et al.  The fast generalized discrete Fourier transforms: A unified approach to the discrete sinusoidal transforms computation , 1999, Signal Process..

[27]  Heinig Georg,et al.  Hartley Transform Representations of Inverses of Real Toeplitz-Plus-Hankel Matrices , 2000 .

[28]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[29]  O. K. Ersoy,et al.  Generalized discrete Hartley transforms , 1991, China., 1991 International Conference on Circuits and Systems.

[30]  Fabio Di Benedetto,et al.  Preconditioning of Block Toeplitz Matrices by Sine Transforms , 1997, SIAM J. Sci. Comput..

[31]  Stefano Serra Capizzano,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999, Numerische Mathematik.

[32]  R. Chan,et al.  A Family of Block Preconditioners for Block Systems , 1992, SIAM J. Sci. Comput..

[33]  P. Heywood Trigonometric Series , 1968, Nature.

[34]  P. Zellini,et al.  On the best least squares fit to a matrix and its applications , 2007 .

[35]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[36]  Guoan Bi,et al.  Fast generalized DFT and DHT algorithms , 1998, Signal Process..

[37]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[38]  Stefano Serra Capizzano,et al.  How to prove that a preconditioner cannot be superlinear , 2003, Math. Comput..

[39]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .