Realization of compressively strained GaN films grown on Si(110) substrates by inserting a thin AlN/GaN superlattice interlayer

We investigate the strain properties of GaN films grown by plasma-assisted molecular beam epitaxy on Si(110) substrates. It is found that the strain of the GaN film can be converted from a tensile to a compressive state simply by inserting a thin AlN/GaN superlattice structure (SLs) within the GaN film. The GaN layers seperated by the SLs can have different strain states, which indicates that the SLs plays a key role in the strain modulation during the growth and the cooling down processes. Using this simple technique, we grow a crack-free GaN film exceeding 2-μm-thick. The realization of the compressively strained GaN film makes it possible to grow thick GaN films without crack generation on Si substrates for optic and electronic device applications.

[1]  Joan M. Redwing,et al.  Growth stresses and cracking in GaN films on (111) Si grown by metalorganic chemical vapor deposition. II. Graded AlGaN buffer layers , 2005 .

[2]  H. Amano,et al.  Metalorganic vapor phase epitaxy growth of crack-free AlN on GaN and its application to high-mobility AlN/GaN superlattices , 2001 .

[3]  Wenzhu Liu,et al.  Influence of the AlN interlayer crystal quality on the strain evolution of GaN layer grown on Si (111) , 2007 .

[4]  Pierre Gibart,et al.  Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy , 2001 .

[5]  T. Egawa,et al.  Effect of n-GaN thickness on internal quantum efficiency in InxGa1-xN multiple-quantum-well light emitting diodes grown on Si (111) substrate , 2011 .

[6]  David J. Smith,et al.  InGaN/GaN multiple-quantum-well light-emitting diodes grown on Si(111) substrates with ZrB2(0001) buffer layers , 2012 .

[7]  Gustaaf Borghs,et al.  High quality GaN grown on silicon(111) using a SixNy interlayer by metal-organic vapor phase epitaxy , 2008 .

[8]  Improved electrical properties in AlGaN∕GaN heterostructures using AlN∕GaN superlattice as a quasi-AlGaN barrier , 2007 .

[9]  Eric Frayssinet,et al.  Growth of thick GaN layers on 4-in. and 6-in. silicon (111) by metal-organic vapor phase epitaxy , 2011 .

[10]  M. Shimizu,et al.  Epitaxial growth of GaN films on Si(110) substrates by rf-MBE , 2012 .

[11]  Junxi Wang,et al.  Effects of buffer layers on the stress and morphology of GaN epilayer grown on Si substrate by MOCVD , 2007 .

[12]  J. Brault,et al.  Blue (Ga,In)N/GaN Light Emitting Diodes on Si(110) Substrate , 2008 .

[13]  J. Bläsing,et al.  Metalorganic vapor-phase epitaxy of GaN layers on Si substrates with Si(1 1 0) and other high-index surfaces , 2010 .

[14]  Daniel Rondi,et al.  Growth of thick, continuous GaN layers on 4-in. Si substrates by metalorganic chemical vapor deposition , 2011 .

[15]  T. Egawa,et al.  Influence of deep-pits on the device characteristics of metal-organic chemical vapor deposition grown AlGaN/GaN high-electron mobility transistors on silicon substrate , 2011 .

[16]  Takashi Jimbo,et al.  GaN on Si Substrate with AlGaN/AlN Intermediate Layer , 1999 .

[17]  J. Bläsing,et al.  Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction , 2007 .

[18]  Yang Cui-bai,et al.  Growth of GaN film on Si (111) substrate using AlN sandwich structure as buffer , 2011 .

[19]  Mathias Müller,et al.  InGaN/GaN light-emitting diodes on Si(1 1 0) substrates grown by metal–organic vapour phase epitaxy , 2009 .

[20]  J. Chauveau,et al.  Growth of GaN based structures on Si(1 1 0) by molecular beam epitaxy , 2010 .

[21]  S. Chua,et al.  Control and improvement of crystalline cracking from GaN thin films grown on Si by metalorganic chemical vapor deposition , 2006 .

[22]  Y. Cordier,et al.  Demonstration of AlGaN/GaN High-Electron-Mobility Transistors Grown by Molecular Beam Epitaxy on Si(110) , 2008, IEEE Electron Device Letters.

[23]  Werner Wegscheider,et al.  Growth of crack-free GaN on Si(1 1 1) with graded AlGaN buffer layers , 2005 .

[24]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .