Numerically fitting the electron Fermi energy and the electron fraction in a neutron star

Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, [Formula: see text], and express [Formula: see text] as a function of the electron fraction, [Formula: see text], and matter density, [Formula: see text]. We obtain several useful analytical formula for [Formula: see text] and [Formula: see text] within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, [Formula: see text], in nuclear astrophysics, a brief discussion on [Formula: see text] and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of [Formula: see text] in any given matter density, and obtain a schematic diagram of [Formula: see text] as a continuous function of [Formula: see text]. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating [Formula: see text] are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of [Formula: see text] and [Formula: see text], which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.

[1]  Insignificance of the anomalous magnetic moment of charged fermions for the equation of state of a magnetized and dense medium , 2015, 1501.06616.

[2]  A. Ankay,et al.  Temporal evolution of isolated pulsars; Age-Tau problem , 2014 .

[3]  X. J. Zhao,et al.  Predicted values of braking indexes and second frequency derivatives for magnetars , 2014 .

[4]  D. N. Basu,et al.  Stability of $\beta$-equilibrated dense matter and core-crust transition in neutron stars , 2014 .

[5]  B. V. Carlson,et al.  Relativistic mean-field hadronic models under nuclear matter constraints , 2014, 1405.3633.

[6]  Jun Du,et al.  The effects of ultra-strong magnetic fields on electron capture rates for iron group nuclei in the outer crust of magnetars , 2014 .

[7]  B. A. Brown,et al.  Electron capture and beta-decay rates for the collapse of O+Ne+Mg cores , 2014 .

[8]  G. Martínez-Pinedo,et al.  Astrophysical weak-interaction rates for selected A=20 and A=24 nuclei , 2014, 1402.0793.

[9]  Yan Xu,et al.  The Nucleon Direct Urca Processes in a Cooling Neutron Star , 2013 .

[10]  Wang Na,et al.  PRESSURE OF DEGENERATE AND RELATIVISTIC ELECTRONS IN A SUPERHIGH MAGNETIC FIELD , 2013, 1312.1442.

[11]  Jian-min Dong,et al.  Density dependence of the symmetry energy probed by beta(-) decay energies of odd-A nuclei , 2013 .

[12]  Jian-min Dong,et al.  Origin of symmetry energy in finite nuclei and density dependence of nuclear matter symmetry energy from measured $\alpha$-decay energies , 2012, 1212.3751.

[13]  Shuang-Nan Zhang,et al.  Modeling Pulsar Time Noise with Long Term Power Law Decay Modulated by Short Term Oscillations of the Magnetic Fields of Neutron Stars , 2012, 1202.1123.

[14]  Jing-Jing Liu The electron capture of nuclides 55Co and 56Ni in the process of stellar core collapse , 2013 .

[15]  H. Toki,et al.  STUDY OF TWO-PROTON RADIOACTIVITY WITHIN THE RELATIVISTIC MEAN-FIELD PLUS BCS APPROACH , 2012, 1310.6913.

[16]  Jian-ping Yuan,et al.  Magnetic field decay of magnetars in supernova remnants , 2012 .

[17]  P. Qiu-he,et al.  A possible mechanism for magnetar soft X-ray/γ-ray emission , 2012 .

[18]  W. Hongyan,et al.  Influence of σ * and φ Mesons on Λ Hyperon 1 S 0 Superfluidity in Neutron Star Matter , 2012 .

[19]  Ying Li,et al.  Effect of Ultrastrong Magnetic Field on the Electron Capture in the Stellar Surroundings , 2012 .

[20]  J. Lattimer,et al.  CONSTRAINING THE SYMMETRY PARAMETERS OF THE NUCLEAR INTERACTION , 2012, 1203.4286.

[21]  J. S. Martins,et al.  Skyrme interaction and nuclear matter constraints , 2012, 1202.3902.

[22]  R. Xu,et al.  H-cluster stars , 2011, Proceedings of the International Astronomical Union.

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  Q. Peng,et al.  The Landau level-superfluid modified factor and the overal soft X/γ-ray efficiency coefficient of a magnetar , 2011, 1312.2720.

[25]  J. Yuan,et al.  The effects of intense magnetic fields on Landau levels in a neutron star , 2011, 1309.0121.

[26]  J. Yuan,et al.  Evolution of superhigh magnetic fields of magnetars , 2011, 1312.2728.

[27]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[28]  Jason P. Keith,et al.  Equation of state of a dense and magnetized fermion system , 2010, 1009.3521.

[29]  J. Han,et al.  The formation of submillisecond pulsars and the possibility of detection , 2009, 0907.2611.

[30]  K. Nomoto,et al.  THERMAL EVOLUTION OF HYPERON-MIXED NEUTRON STARS , 2009 .

[31]  H. Schulze,et al.  Neutron star structure with modern nucleonic three-body forces , 2008 .

[32]  H. Shen,et al.  Influence of the hadronic equation of state on the hadron-quark phase transition in neutron stars , 2008, 0802.1965.

[33]  J. Lattimer,et al.  Neutron star observations: Prognosis for equation of state constraints , 2007 .

[34]  D. G. Yakovlev,et al.  Neutron Stars 1 : Equation of State and Structure , 2007 .

[35]  J. Schaffner-Bielich,et al.  Outer crust of nonaccreting cold neutron stars , 2005, astro-ph/0509325.

[36]  A. Burrows,et al.  Neutrino opacities in nuclear matter , 2004, astro-ph/0404432.

[37]  H. Toki,et al.  Masses, deformations and charge radii: Nuclear ground-state properties in the relativistic mean field model , 2005, nucl-th/0503086.

[38]  B. Owen Maximum elastic deformations of compact stars with exotic equations of state. , 2005, Physical review letters.

[39]  P. Ellis,et al.  Isospin asymmetry in nuclei and neutron stars , 2004, nucl-th/0410066.

[40]  J. Lattimer,et al.  The Physics of Neutron Stars , 2004, Science.

[41]  C. Horowitz,et al.  Neutrino - pasta scattering: The Opacity of nonuniform neutron - rich matter , 2004, astro-ph/0401079.

[42]  R. Xu,et al.  A Thermal Featureless Spectrum: Evidence for Bare Strange Stars? , 2002, astro-ph/0202365.

[43]  H. Shen Complete relativistic equation of state for neutron stars , 2002, nucl-th/0202030.

[44]  O. Gnedin,et al.  Neutrino emission from neutron stars , 2000, astro-ph/0012122.

[45]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[46]  P. Ring,et al.  New parametrization for the Lagrangian density of relativistic mean field theory , 1996, nucl-th/9607039.

[47]  Yuichi Sugahara,et al.  Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms , 1994 .

[48]  Greiner,et al.  Strange hadronic matter. , 1993, Physical review letters.

[49]  S. Moszkowski,et al.  Reconciliation of neutron-star masses and binding of the Lambda in hypernuclei. , 1991, Physical review letters.

[50]  J. Lattimer,et al.  Direct URCA process in neutron stars. , 1991, Physical review letters.

[51]  N. Glendenning,et al.  Neutron Stars Are Giant Hypernuclei , 1985 .

[52]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[53]  V. Canuto EQUATION OF STATE AT ULTRAHIGH DENSITIES , 1974 .

[54]  J. Negele,et al.  Neutron star matter at sub-nuclear densities , 1973 .

[55]  C. Pethick,et al.  NUCLEAR SURFACE ENERGY AND NEUTRON-STAR MATTER. , 1972 .

[56]  J. Wheeler,et al.  SELECTED PROPERTIES OF MATTER AT HIGH DENSITY AND TEMPERATURE. EQUATION OF STATE AND RATES OF BETA PROCESSES AND ASSOCIATED NEUTRINO LOSSES. , 1972 .

[57]  H. Bethe,et al.  Neutron star matter , 1971 .

[58]  G. Baym,et al.  The Ground state of matter at high densities: Equation of state and stellar models , 1971 .

[59]  E. Salpeter Energy and Pressure of a Zero-Temperature Plasma , 1961 .