Supramolecular H-bonded porous networks at surfaces: exploiting primary and secondary interactions in a bi-component melamine-xanthine system.

The control over the formation of a bi-component porous network was attained by the self-assembly at a solid-liquid interface by exploiting both primary and secondary non-covalent interactions between melamine and N(3)-alkylated xanthine modules.

[1]  A. Ciesielski,et al.  Self-assembly of N3-substituted xanthines in the solid state and at the solid-liquid interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[2]  D. Amabilino,et al.  Pasteurian segregation on a surface imaged in situ at the molecular level. , 2012, Angewandte Chemie.

[3]  Gábor Paragi,et al.  Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. , 2011, Chemistry.

[4]  E. W. Meijer,et al.  Nucleoside-assisted self-assembly of oligo(p-phenylenevinylene)s at liquid/solid interface: chirality and nanostructures. , 2011, Journal of the American Chemical Society.

[5]  W. Xu,et al.  Homochiral xanthine quintet networks self-assembled on Au(111) surfaces. , 2011, ACS nano.

[6]  A. Ciesielski,et al.  Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces. , 2011, Nanoscale.

[7]  G. Batta,et al.  3-Substituted xanthines as promising candidates for quadruplex formation: Computational, synthetic and analytical studies , 2011 .

[8]  M. Dubois,et al.  Two-dimensional molecular organization of pyridinecarboxylic acids adsorbed on graphite. , 2010, Langmuir.

[9]  M. Bonini,et al.  Towards Supramolecular Engineering of Functional Nanomaterials: Pre‐Programming Multi‐Component 2D Self‐Assembly at Solid‐Liquid Interfaces , 2010, Advanced materials.

[10]  A. Ciesielski,et al.  Dynamers at the solid-liquid interface: controlling the reversible assembly/reassembly process between two highly ordered supramolecular guanine motifs. , 2010, Angewandte Chemie.

[11]  S. De Feyter,et al.  2D networks of rhombic-shaped fused dehydrobenzo[12]annulenes: structural variations under concentration control. , 2009, Journal of the American Chemical Society.

[12]  S. De Feyter,et al.  Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. , 2009, Angewandte Chemie.

[13]  M. Persson,et al.  Tailoring bicomponent supramolecular nanoporous networks: phase segregation, polymorphism, and glasses at the solid-liquid interface. , 2009, Journal of the American Chemical Society.

[14]  D. Bonifazi,et al.  Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. , 2009, Chemistry.

[15]  J. Barth,et al.  High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. , 2009, Journal of the American Chemical Society.

[16]  J. Lehn,et al.  STM insight into hydrogen-bonded bicomponent 1D supramolecular polymers with controlled geometries at the liquid-solid interface. , 2009, Angewandte Chemie.

[17]  S. D. Feyter,et al.  Structure and function revealed with submolecular resolution at the liquid–solid interface , 2009 .

[18]  S. De Feyter,et al.  Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. , 2009, Chemical Society reviews.

[19]  J. P. Garrahan,et al.  Random Tiling and Topological Defects in a Two-Dimensional Molecular Network , 2008, Science.

[20]  M. Prato,et al.  Pre-programmed bicomponent porous networks at the solid-liquid interface: the low concentration regime. , 2008, Chemical communications.

[21]  A. Jackson,et al.  The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[22]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[23]  E. Lacaze,et al.  Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers , 2008 .

[24]  C. Rovira,et al.  Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface. , 2008, Chemical communications.

[25]  P. Samorí,et al.  Organic Reactivity in Confined Spaces under Scanning Tunneling Microscopy Control: Tailoring the Nanoscale World , 2007 .

[26]  F. Rosei,et al.  Crystal engineering in two dimensions: An approach to molecular nanopatterning , 2007 .

[27]  F. Rosei,et al.  Stabilization of exotic minority phases in a multicomponent self-assembled molecular network , 2007, Nanotechnology.

[28]  W. Xu,et al.  Cyanuric acid and melamine on Au111: structure and energetics of hydrogen-bonded networks. , 2007, Small.

[29]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[30]  K. Müllen,et al.  Self-assembly of periodic bicomponent wires and ribbons. , 2007, Angewandte Chemie.

[31]  M. Surin,et al.  Multicomponent monolayer architectures at the solid-liquid interface: towards controlled space-confined properties and reactivity of functional building blocks. , 2007, Small.

[32]  A. Matzger,et al.  Molecular packing and symmetry of two-dimensional crystals. , 2007, Accounts of chemical research.

[33]  F. D. De Schryver,et al.  Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. , 2006, Journal of the American Chemical Society.

[34]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[35]  Stefan J H Griessl,et al.  Self-assembly of trimesic acid at the liquid-solid interface-a study of solvent-induced polymorphism. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  F. Diederich,et al.  Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. , 2004, Angewandte Chemie.

[37]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[38]  Célia Fonseca Guerra,et al.  Hydrogen bonding in mimics of Watson-Crick base pairs involving C-H proton donor and F proton acceptor groups: a theoretical study. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  K. Müllen,et al.  Toward two-dimensional supramolecular control of hydrogen-bonded arrays: The case of isophthalic acids , 2003 .

[40]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[41]  C. Rovira,et al.  Synthesis, separation, and isomer-dependent packing in two dimensions--detected by scanning tunnelling microscopy--of a TTF derivative. , 2003, Chemical Communications.

[42]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[43]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Perepichka,et al.  Mastering fundamentals of supramolecular design with carboxylic acids. Common lessons from X-ray crystallography and scanning tunneling microscopy. , 2011, Chemical Society reviews.

[45]  S. Furukawa,et al.  Two-dimensional crystal engineering at the liquid-solid interface. , 2009, Topics in current chemistry.

[46]  F. Rosei,et al.  Two-dimensional nanotemplates as surface cues for the controlled assembly of organic molecules. , 2008, Topics in current chemistry.

[47]  D. Sherrington,et al.  Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions , 2001 .

[48]  J. Lehn,et al.  Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. , 1993, Proceedings of the National Academy of Sciences of the United States of America.