High-Level Diversity of Dinoflagellates in the Natural Environment, Revealed by Assessment of Mitochondrial cox1 and cob Genes for Dinoflagellate DNA Barcoding

ABSTRACT DNA barcoding is a diagnostic technique for species identification using a short, standardized DNA. An effective DNA barcoding marker would be very helpful for unraveling the poorly understood species diversity of dinoflagellates in the natural environment. In this study, the potential utility for DNA barcoding of mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob) was assessed. Among several primer sets examined, the one amplifying a 385-bp cob fragment was most effective for dinoflagellates. This short cob fragment is easy to sequence and yet possess reasonable taxon resolution. While the lack of a uniform gap between interspecific and intraspecific distances poses difficulties in establishing a phylum-wide species-discriminating distance threshold, the variability of cob allows recognition of species within particular lineages. The potential of this cob fragment as a dinoflagellate species marker was further tested by applying it to an analysis of the dinoflagellate assemblages in Long Island Sound (LIS) and Mirror Lake in Connecticut. In LIS, a highly diverse assemblage of dinoflagellates was detected. Some taxa can be identified to the species and some to the genus level, including a taxon distinctly related to the bipolar species Polarella glacialis, and the large number of others cannot be clearly identified, due to the inadequate database. In Mirror Lake, a Ceratium species and an unresolved taxon were detected, exhibiting a temporal transition from one to the other. We demonstrate that this 385-bp cob fragment is promising for lineage-wise dinoflagellate species identification, given an adequate database.

[1]  L. Chan,et al.  Comparative studies on morphology, ITS sequence and protein profile of Alexandrium tamarense and A catenella isolated from the China Sea , 2008 .

[2]  D. Bhattacharya,et al.  PHYLOGENY OF DINOFLAGELLATES BASED ON MITOCHONDRIAL CYTOCHROME B AND NUCLEAR SMALL SUBUNIT RDNA SEQUENCE COMPARISONS 1 , 2005 .

[3]  D. Vaulot,et al.  Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences , 2004 .

[4]  Ilha Lee,et al.  Stoeckeria algicida n. gen., n. sp. (Dinophyceae) from the Coastal Waters off Southern Korea: Morphology and Small Subunit Ribosomal DNA Gene Sequence , 2005, The Journal of eukaryotic microbiology.

[5]  G. Hallegraeff,et al.  TAKAYAMA GEN. NOV. (GYMNODINIALES, DINOPHYCEAE), A NEW GENUS OF UNARMORED DINOFLAGELLATES WITH SIGMOID APICAL GROOVES, INCLUDING THE DESCRIPTION OF TWO NEW SPECIES 1 , 2003 .

[6]  A. Fazekas,et al.  DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach , 2006 .

[7]  M. Iwataki,et al.  Heterocapsa psammophila sp. nov. (Peridiniales, Dinophyceae), a new sand‐dwelling marine dinoflagellate , 2005 .

[8]  C. Gissi,et al.  Evolution of the mitochondrial genetic system: an overview. , 2000, Gene.

[9]  D. Mann,et al.  An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). , 2007, Protist.

[10]  C. Tomas,et al.  Identifying marine phytoplankton , 1997 .

[11]  P. Hebert,et al.  Identification of Birds through DNA Barcodes , 2004, PLoS biology.

[12]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[13]  Senjie Lin,et al.  Geographic distribution of Karlodinium veneficum in the US east coast as detected by ITS-ferredoxin real-time PCR assay , 2008 .

[14]  D. Anderson,et al.  Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae) 1 , 2007 .

[15]  A. Colorni,et al.  THE PHYLOGENETIC RELATIONSHIP OF PFIESTERIA PISCICIDA, CRYPTOPERIDINIOPSOID SP. AMYLOODINOUM OCELLATUM AND A PFIESTERIA‐LIKE DINOFLAGELLATE TO OTHER DINOFLAGELLATES AND APICOMPLEXANS , 1999, Journal of Phycology.

[16]  M. Vandersea,et al.  RECOGNIZING DINOFLAGELLATE SPECIES USING ITS rDNA SEQUENCES 1 , 2007 .

[17]  T. Horiguchi,et al.  Pyramidodinium atrofuscum gen. et sp. nov. (Dinophyceae), a new marine sand‐dwelling coccoid dinoflagellate from tropical waters , 2005 .

[18]  Identifying Marine Phytoplankton , 1998 .

[19]  John C. Avise,et al.  Molecular Markers, Natural History and Evolution , 1993, Springer US.

[20]  K. Steidinger,et al.  IDENTIFICATION OF PFIESTERIA PISCICIDA (DINOPHYCEAE) AND PFIESTERIA‐LIKE ORGANISMS USING INTERNAL TRANSCRIBED SPACER‐SPECIFIC PCR ASSAYS 1 , 2003 .

[21]  M. Takabayashi,et al.  MITOCHONDRIAL DNA PHYLOGENY OF THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) 1 , 2004 .

[22]  D. M. Anderson,et al.  Red tides. , 1994, Scientific American.

[23]  T. Cavalier-smith,et al.  Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements , 2001, Journal of Molecular Evolution.

[24]  G. Procaccini,et al.  POLARELLA GLACIALIS, GEN. NOV., SP. NOV. (DINOPHYCEAE): SUESSIACEAE ARE STILL ALIVE! , 1999 .

[25]  G. Barker,et al.  Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). , 2006, American journal of botany.

[26]  C. Lovejoy,et al.  Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis , 2003, Polar Biology.

[27]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  R. Rowan,et al.  REVIEW—DIVERSITY AND ECOLOGY OF ZOOXANTHELLAE ON CORAL REEFS , 1998 .

[29]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[30]  Purificación López-García,et al.  Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jos Houbraken,et al.  Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case , 2007, Proceedings of the National Academy of Sciences.

[32]  D. Bhattacharya,et al.  Development of a Dinoflagellate-Oriented PCR Primer Set Leads to Detection of Picoplanktonic Dinoflagellates from Long Island Sound , 2006, Applied and Environmental Microbiology.

[33]  Hui Zhou,et al.  Genetic diversity of small eukaryotes from the coastal waters of Nansha Islands in China. , 2004, FEMS microbiology letters.

[34]  G. Saunders,et al.  Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Senjie Lin,et al.  Development of a cob-18S rRNA Gene Real-Time PCR Assay for Quantifying Pfiesteria shumwayae in the Natural Environment , 2005, Applied and Environmental Microbiology.

[36]  D. Anderson,et al.  Biogeography of toxic dinoflagellates in the genusAlexandrium from the northeastern United States and Canada , 1994 .

[37]  C. Birky Workshop on barcoded DNA: application to rotifer phylogeny, evolution, and systematics , 2007, Hydrobiologia.

[38]  Sylvie Duthoit,et al.  DNA barcoding the floras of biodiversity hotspots , 2008, Proceedings of the National Academy of Sciences.

[39]  K. Tangen,et al.  Chapter 3 – Dinoflagellates , 1996 .

[40]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[41]  R. Wachter,et al.  Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity , 2001, Nature.

[42]  Debashish Bhattacharya,et al.  A Three-Gene Dinoflagellate Phylogeny Suggests Monophyly of Prorocentrales and a Basal Position for Amphidinium and Heterocapsa , 2007, Journal of Molecular Evolution.

[43]  John C. Avise Molecular Markers, Natural History and Evolution , 1994, Springer US.

[44]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[45]  John C. Avise,et al.  Molecular Markers, Natural History and Evolution , 1993, Springer US.

[46]  D. Janzen,et al.  Use of DNA barcodes to identify flowering plants. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Jeffrey D. Palmer,et al.  Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence , 2005, Journal of Molecular Evolution.