Electrically generated exciton polaritons with spin on-demand

Generation and manipulation of exciton polaritons with controllable spin could deeply impact spintronic applications, quantum simulations, and quantum information processing, but is inherently challenging due to the charge neutrality of the polariton and the device complexity it requires. In this work, we demonstrate electrical generation of spin-polarized exciton polaritons in a monolithic dielectric perovskite metasurface embedded in a light-emitting transistor. A finely tailored interplay of in- and out-of-plane symmetry breaking of the metasurface allows to lift the spin degeneracy through the polaritonic Rashba effect, yielding high spin purity with normalized Stokes parameter of S3~0.8. Leveraging on spin-momentum locking, the unique metatransistor device architecture enables electrical control of spin and directionality of the polaritonic emission. This work advances the development of compact and tunable spintronic devices, and represents an important step toward the realization of electrically pumped inversionless spin-lasers.

[1]  R. Su,et al.  Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature , 2024, Nature Photonics.

[2]  C. Soci,et al.  Directional Emission from Electrically Injected Exciton-Polaritons in Perovskite Metasurfaces. , 2023, Nano letters.

[3]  J. L. Pura,et al.  Room Temperature Exciton–Polariton Condensation in Silicon Metasurfaces Emerging from Bound States in the Continuum , 2023, Nano letters.

[4]  W. Bao,et al.  Room-temperature polariton quantum fluids in halide perovskites , 2022, Nature Communications.

[5]  Y. Kivshar,et al.  Observation of intrinsic chiral bound states in the continuum , 2022, Nature.

[6]  Q. Song,et al.  Chiral emission from resonant metasurfaces , 2022, Science.

[7]  S. Maier,et al.  Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces , 2022, Nature Materials.

[8]  Jingyi Tian,et al.  Polarization‐Tunable Perovskite Light‐Emitting Metatransistor , 2022, Advanced materials.

[9]  Xiang Zhang,et al.  Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature , 2022, Nature Materials.

[10]  P. Lagoudakis,et al.  Polariton condensates for classical and quantum computing , 2022, Nature Reviews Physics.

[11]  A. Fieramosca,et al.  Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity , 2022, Nature Nanotechnology.

[12]  P. Lagoudakis,et al.  Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite , 2022, Science advances.

[13]  C. Soci,et al.  Optical Rashba Effect in a Light‐Emitting Perovskite Metasurface , 2022, Advanced materials.

[14]  A. Genco,et al.  Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling , 2021, Nature Photonics.

[15]  S. Schumacher,et al.  Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature , 2021, Nature Communications.

[16]  A. Fieramosca,et al.  Perovskite semiconductors for room-temperature exciton-polaritonics , 2021, Nature Materials.

[17]  D. Gamelin,et al.  Spin-orbit–coupled exciton-polariton condensates in lead halide perovskites , 2021, Science advances.

[18]  C. Soci,et al.  Co‐Evaporated Perovskite Light‐Emitting Transistor Operating at Room Temperature , 2021, Advanced Electronic Materials.

[19]  L. Pfeiffer,et al.  Polariton Bose–Einstein condensate from a bound state in the continuum , 2021, Nature.

[20]  Q. Xiong,et al.  Optical switching of topological phase in a perovskite polariton lattice , 2021, Science Advances.

[21]  Christine Schuon About this Study , 2021, Doors, Entrances and Beyond... Various Aspects of Entrances and Doors of the Tombs in the Memphite Necropoleis during the Old Kingdom.

[22]  R. Agarwal,et al.  Generation of helical topological exciton-polaritons , 2020, Science.

[23]  E. Hasman,et al.  Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal , 2020, Nature Nanotechnology.

[24]  Taiki Yoda,et al.  Generation and Annihilation of Topologically Protected Bound States in the Continuum and Circularly Polarized States by Symmetry Breaking. , 2020, Physical review letters.

[25]  J. Zi,et al.  Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs , 2020, Light: Science & Applications.

[26]  D. Ballarini,et al.  Polaritonic neuromorphic computing outperforms linear classifiers , 2019, Nano letters.

[27]  Q. Xiong,et al.  Observation of exciton polariton condensation in a perovskite lattice at room temperature , 2019, Nature Physics.

[28]  X. Letartre,et al.  Realization of Bound state In the Continuum induced by vertical symmetry breaking in photonic lattice , 2019, 1905.03868.

[29]  Lei Shi,et al.  Circularly Polarized States Spawning from Bound States in the Continuum. , 2019, Physical review letters.

[30]  C. Soci,et al.  Brightness Enhancement in Pulsed-Operated Perovskite Light-Emitting Transistors. , 2018, ACS applied materials & interfaces.

[31]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[32]  A. Zakhidov,et al.  Halide‐Perovskite Resonant Nanophotonics , 2018, Advanced Optical Materials.

[33]  M. Gather,et al.  Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. , 2017, Nature materials.

[34]  Vinayak P. Dravid,et al.  Valley-polarized exciton–polaritons in a monolayer semiconductor , 2017, Nature Photonics.

[35]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[36]  M. Green,et al.  Temperature dependent optical properties of CH 3 NH 3 PbI 3 perovskite by spectroscopic ellipsometry , 2016 .

[37]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[38]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[39]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[40]  M. Soljačić,et al.  Topological nature of optical bound states in the continuum. , 2014, Physical review letters.

[41]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[42]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.

[43]  D. Ballarini,et al.  All-optical polariton transistor , 2012, Nature Communications.

[44]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[45]  E. Hasman,et al.  Geometric doppler effect: spin-split dispersion of thermal radiation. , 2010, Physical review letters.

[46]  Romuald Houdré,et al.  Exciton–polariton spin switches , 2010 .

[47]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[48]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2008, 0812.2748.

[49]  Alan J. Heeger,et al.  Light emission from an ambipolar semiconducting polymer field-effect transistor , 2005, SPIE OPTO.

[50]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .