An accelerated primal-dual iterative scheme for the L2-TV regularized model of linear inverse problems

A model with the and total variational (TV) regularization terms for linear inverse problems is considered. The regularized model is reformulated as a saddle-point problem, and the primal and dual variables are discretized in the piecewise affine and piecewise constant finite element spaces, respectively. An accelerated primal-dual iterative scheme with an convergence rate is proposed for the discretized problem, where is the iteration counter. Both the regularization and perturbation errors of the regularized model, and the finite element discretization and iteration errors of the accelerated primal-dual scheme, are estimated. Preliminary numerical results are reported to show the efficiency of the proposed iterative scheme.

[1]  Xiaoming Yuan,et al.  Convergence Analysis of Primal–Dual Based Methods for Total Variation Minimization with Finite Element Approximation , 2018, J. Sci. Comput..

[2]  Xiaoming Yuan,et al.  Linearized primal-dual methods for linear inverse problems with total variation regularization and finite element discretization , 2016 .

[3]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[4]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[5]  Xiaoming Yuan,et al.  An alternating direction method of multipliers with a worst-case O(1/n2) convergence rate , 2018, Math. Comput..

[6]  Kristian Bredies,et al.  Preconditioned Douglas-Rachford Splitting Methods for Convex-concave Saddle-point Problems , 2015, SIAM J. Numer. Anal..

[7]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[8]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[9]  Sören Bartels,et al.  Total Variation Minimization with Finite Elements: Convergence and Iterative Solution , 2012, SIAM J. Numer. Anal..

[10]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[11]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[12]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[13]  Bradley J. Lucier,et al.  Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing , 2011, SIAM J. Numer. Anal..

[14]  Henryk Gzyl,et al.  Linear Inverse Problems - The Maximum Entropy Connection , 2011, Series on Advances in Mathematics for Applied Sciences.

[15]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[16]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[17]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[18]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[19]  Karl Kunisch,et al.  Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..

[20]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[21]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[22]  K. Kunisch,et al.  Regularization by Functions of Bounded Variation and Applications to Image Enhancement , 1999 .

[23]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[24]  K. Kunisch,et al.  Regularization of linear least squares problems by total bounded variation , 1997 .

[25]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[26]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[27]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[28]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[29]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[30]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  S. Gutman Identification of discontinuous parameters in flow equations , 1990 .

[33]  W. Ziemer Weakly differentiable functions , 1989 .

[34]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[35]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[36]  G. Wing,et al.  A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding , 1987 .

[37]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[38]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[39]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[40]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[41]  R. Kanwal Linear Integral Equations , 1925, Nature.