Roadmap towards new generation liquid metal thermal interface materials

[1]  Weijie Liang,et al.  Silicone-Based Thermally Conductive Gel Fabrication via Hybridization of Low-Melting-Point Alloy–Hexagonal Boron Nitride–Graphene Oxide , 2023, Nanomaterials.

[2]  B. Cao,et al.  Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy. , 2023, ACS applied materials & interfaces.

[3]  Zhizhu He,et al.  Dynamic Leakage‐Free Liquid Metals , 2022, Advanced Functional Materials.

[4]  B. Liu,et al.  High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid metal inclusions , 2022, Journal of Materials Science.

[5]  B. Fu,et al.  Paste-Like Recyclable Ga Liquid Metal Phase Change Composites Loaded with Miscible Ga2O3 particles for Transient Cooling of Portable Electronics , 2022, Applied Thermal Engineering.

[6]  Jing Liu,et al.  Two-stage multichannel liquid–metal cooling system for thermal management of high-heat-flux-density chip array , 2022, Energy Conversion and Management.

[7]  Wei Lai,et al.  Thermal Contact Resistance Optimization of Press-Pack IGBT Device Based on Liquid Metal Thermal Interface Material , 2022, IEEE Transactions on Power Electronics.

[8]  Q. Zhang,et al.  A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. , 2022, Materials horizons.

[9]  Yanmei Zheng,et al.  Graphene/Copper Nanoparticles as Thermal Interface Materials , 2022, ACS Applied Nano Materials.

[10]  P. Tresco,et al.  Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications , 2022, Advanced healthcare materials.

[11]  B. Fu,et al.  Gallium‐Based Liquid Metal Composites with Enhanced Thermal and Electrical Performance Enabled by Structural Engineering of Filler , 2022, Advanced Engineering Materials.

[12]  Jing Liu,et al.  Liquid metal biomaterials for biomedical imaging. , 2022, Journal of materials chemistry. B.

[13]  A. Fan,et al.  Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics , 2021, International Journal of Thermal Sciences.

[14]  Xiaomin Li,et al.  Construction of 3D Conductive Network in Liquid Gallium with Enhanced Thermal and Electrical Performance , 2021, Advanced Materials Technologies.

[15]  Huafeng Tian,et al.  Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications , 2021, Composites Part A: Applied Science and Manufacturing.

[16]  M. Dickey,et al.  Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker , 2021, Advanced materials.

[17]  Robert Y. Wang,et al.  Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning. , 2021, ACS applied materials & interfaces.

[18]  Z. Wu,et al.  Self‐Shaping Soft Electronics Based on Patterned Hydrogel with Stencil‐Printed Liquid Metal , 2021, Advanced Functional Materials.

[19]  J. Greer,et al.  Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials , 2021 .

[20]  Najam-ul-Hassan Shah,et al.  Gallium oxide-stabilized oil in liquid metal emulsions. , 2021, Soft matter.

[21]  Matthew D. Green,et al.  High Thermal Conductivity in Multiphase Liquid Metal and Silicon Carbide Soft Composites , 2021, Advanced Materials Interfaces.

[22]  Changhui Cai,et al.  Experimental Investigation on the Heat Dissipation Performance of Bismuth-Based Alloy Thermal Conductive Sheet , 2021 .

[23]  Y. Nam,et al.  Rapid Enhancement of Thermal Conductivity by Incorporating Oxide-Free Copper Nanoparticle Clusters for Highly Conductive Liquid Metal-based Thermal Interface Materials , 2021, 2021 IEEE 71st Electronic Components and Technology Conference (ECTC).

[24]  C. Chung,et al.  Highly Thermal Dissipation for Large HPC Package Using Liquid Metal Materials , 2021, 2021 IEEE 71st Electronic Components and Technology Conference (ECTC).

[25]  M. Malakooti,et al.  A double inclusion model for liquid metal polymer composites , 2021 .

[26]  Y. Nam,et al.  Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials , 2021 .

[27]  Minghui Yang,et al.  Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials , 2021, Nanomaterials.

[28]  Carmel Majidi,et al.  Fluid-like Soft Machines with Liquid Metal , 2021 .

[29]  J. Sylvestre,et al.  A kinetic study of liquid gallium diffusion in a tin-based solder alloy and its role in solder embrittlement , 2021, Journal of Materials Science.

[30]  R. Ruoff,et al.  A general approach to composites containing nonmetallic fillers and liquid gallium , 2021, Science Advances.

[31]  M. Muhamad,et al.  The Effect of Bismuth Addition on Sn-Ag-Cu Lead-Free Solder Properties: A Short Review , 2020, IOP Conference Series: Earth and Environmental Science.

[32]  Jacob L. Jones,et al.  Liquid–Solid Mixtures of Ga Metal Infused with Cu Microparticles and Nanoparticles for Microscale and Nanoscale Patterning of Solid Metals at Room Temperature , 2020 .

[33]  K. Kalantar-zadeh,et al.  Gallium-Based Liquid Metal Particles for Therapeutics. , 2020, Trends in biotechnology.

[34]  A. H. Shamsuddin,et al.  A review of thermal interface material fabrication method toward enhancing heat dissipation , 2020, International Journal of Energy Research.

[35]  J. Sylvestre,et al.  Gallium Liquid Metal Embrittlement of Tin-based Solder Alloys , 2020, Metallurgical and Materials Transactions A.

[36]  G. Bevill,et al.  Nanoscale Barrier Layers to Enable the Use of Gallium-Based Thermal Interface Materials with Aluminum , 2020, Journal of Materials Engineering and Performance.

[37]  Seunghwa Ryu,et al.  Investigation of thermal conductivity for liquid metal composites using the micromechanics-based mean-field homogenization theory. , 2020, Soft matter.

[38]  K. Huang,et al.  An anti-leakage liquid metal thermal interface material , 2020, RSC advances.

[39]  Guoqing Zhang,et al.  Low Melting-Point Alloy–Boron Nitride Nanosheet Composites for Thermal Management , 2020 .

[40]  Jun-Heng Fu,et al.  Room temperature liquid metal: its melting point, dominating mechanism and applications , 2020 .

[41]  Yulong Ji,et al.  Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates , 2020 .

[42]  P. Shamberger,et al.  Review of metallic phase change materials for high heat flux transient thermal management applications , 2020 .

[43]  Robert Y. Wang,et al.  Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds. , 2019, ACS applied materials & interfaces.

[44]  Ma Xianfeng,et al.  Thermal Property Enhancement of Liquid Metal Used As Thermal Interface Material by Mixing Magnetic Particles , 2019, ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer.

[45]  Jinliang Yan,et al.  Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy , 2019, Chinese Physics B.

[46]  Y. Liao,et al.  LTD PKG. (Liquid Thermal Dissipation Package) Technology , 2019, 2019 14th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT).

[47]  Matthew D. Green,et al.  Oxide‐Mediated Formation of Chemically Stable Tungsten–Liquid Metal Mixtures for Enhanced Thermal Interfaces , 2019, Advanced materials.

[48]  Zhizhu He,et al.  Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging , 2019, Frontiers in Energy.

[49]  Tiansheng Gan,et al.  Anisotropic liquid metal–elastomer composites , 2019, Journal of Materials Chemistry C.

[50]  Yulong Ji,et al.  Effect of metal buffer layer on the thermal interface performance of liquid metal alloy on copper plate , 2019, Journal of Materials Science: Materials in Electronics.

[51]  Xuechen Chen,et al.  Efficient heat conducting liquid metal/CNT pads with thermal interface materials , 2019, Bulletin of Materials Science.

[52]  Young-Geun Park,et al.  Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement. , 2019, Nano letters.

[53]  Yi-xin Zhou,et al.  Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management , 2019, Energy Conversion and Management.

[54]  S. Wei,et al.  Investigation on enhancing the thermal conductance of gallium-based thermal interface materials using chromium-coated diamond particles , 2019, Journal of Materials Science: Materials in Electronics.

[55]  Chang Liu,et al.  Vertically aligned carbon nanotube arrays as a thermal interface material , 2019, APL Materials.

[56]  Robert Y. Wang,et al.  Thermal Conductivity Enhancement of Soft Polymer Composites through Magnetically Induced Percolation and Particle–Particle Contact Engineering , 2019, Advanced Materials Interfaces.

[57]  Han Liu,et al.  Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving , 2018 .

[58]  Jing Liu,et al.  Liquid Metal Soft Machines , 2018, Topics in Mining, Metallurgy and Materials Engineering.

[59]  Liu Han,et al.  AlN/Ga-based Liquid Metal/PDMS Ternary Thermal Grease for Heat Dissipation in Electronic Devices , 2018, Rare Metal Materials and Engineering.

[60]  Jing Liu,et al.  Liquid Metal Biomaterials: Principles and Applications , 2018 .

[61]  Jianbo Tang,et al.  Soft and Moldable Mg‐Doped Liquid Metal for Conformable Skin Tumor Photothermal Therapy , 2018, Advanced healthcare materials.

[62]  Hao Chang,et al.  Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability , 2018, RSC advances.

[63]  Zhen Gu,et al.  Advances in liquid metals for biomedical applications. , 2018, Chemical Society reviews.

[64]  Sheng Chu,et al.  High thermal conductivity liquid metal pad for heat dissipation in electronic devices , 2018 .

[65]  Robert Y. Wang,et al.  In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives. , 2018, ACS applied materials & interfaces.

[66]  Josef Hansson,et al.  Novel nanostructured thermal interface materials: a review , 2018 .

[67]  Jing Li,et al.  Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM2ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties. , 2017, ACS applied materials & interfaces.

[68]  Jing Liu,et al.  Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins , 2017 .

[69]  Arnan Mitchell,et al.  Liquid metal enabled microfluidics. , 2017, Lab on a chip.

[70]  Michael D. Bartlett,et al.  High thermal conductivity in soft elastomers with elongated liquid metal inclusions , 2017, Proceedings of the National Academy of Sciences.

[71]  Tongmin Wang,et al.  Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys , 2017 .

[72]  Jing Liu,et al.  Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications , 2016, Micromachines.

[73]  Yulong Ji,et al.  Highly Conductive Thermal Paste of Liquid Metal Alloy Dispersed With Copper Particles , 2016 .

[74]  Liwu Fan,et al.  Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material , 2016 .

[75]  Josef Hansson,et al.  Review of current progress of thermal interface materials for electronics thermal management applications , 2016, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).

[76]  Pierre Albert,et al.  Eternal Packages: Liquid Metal Flip Chip Devices , 2016, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC).

[77]  Johan Liu,et al.  Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment , 2015, Scientific Reports.

[78]  Michael C. Hamilton,et al.  Accelerated aging and thermal cycling of low melting temperature alloys as wet thermal interface materials , 2015, Microelectron. Reliab..

[79]  Yuqing Sun,et al.  Investigation on Carbon Nanotubes as Thermal Interface Material Bonded With Liquid Metal Alloy , 2015 .

[80]  Jing Liu,et al.  Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink , 2014, Science China Technological Sciences.

[81]  Myeongjin Kim,et al.  Effect of Al2O3 coverage on SiC particles for electrically insulated polymer composites with high thermal conductivity , 2014 .

[82]  Yu Cao,et al.  Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications , 2014, Journal of Materials Science: Materials in Electronics.

[83]  Jing Liu,et al.  Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil , 2014 .

[84]  Yi Zheng,et al.  Direct Desktop Printed-Circuits-on-Paper Flexible Electronics , 2013, Scientific Reports.

[85]  Jing Liu,et al.  Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area , 2013 .

[86]  Jing Liu,et al.  Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink , 2012, PloS one.

[87]  Jing Liu,et al.  Heat Spreader Based on Room-Temperature Liquid Metal , 2012 .

[88]  Liangliang Li,et al.  Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material , 2012 .

[89]  Jing Liu,et al.  Gallium-based thermal interface material with high compliance and wettability , 2012 .

[90]  M. Shen,et al.  Thermal conductivity model of filled polymer composites , 2011 .

[91]  Jing Liu,et al.  Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal , 2011 .

[92]  R. Raj,et al.  Next generation materials for thermal interface and high density energy storage applications via liquid phase sintering , 2009, 2009 11th Electronics Packaging Technology Conference.

[93]  Jing Liu,et al.  Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device , 2009 .

[94]  Rolf Landauer,et al.  Electrical conductivity in inhomogeneous media , 2008 .

[95]  L C Cadwallader,et al.  GaInSn usage in the research laboratory. , 2008, The Review of scientific instruments.

[96]  J. Molina,et al.  Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast , 2007 .

[97]  Jing Liu,et al.  Nano liquid-metal fluid as ultimate coolant , 2007 .

[98]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[99]  Yong-gang Lv,et al.  A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid , 2006 .

[100]  C. Suryanarayana,et al.  Mechanism of low-temperature θ-CuGa2 phase formation in Cu-Ga alloys by mechanical alloying , 2004 .

[101]  W. Jiajun,et al.  Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites , 2004 .

[102]  J. D. Felske,et al.  EFFECTIVE THERMAL CONDUCTIVITY OF COMPOSITE SPHERES IN A CONTINUOUS MEDIUM WITH CONTACT RESISTANCE , 2004 .

[103]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[104]  Yaowu Shi,et al.  Evaluation on the characteristics of tin-silver-bismuth solder , 2002 .

[105]  D. Chung Thermal interface materials , 2001, Electric and Hybrid Vehicle Technology International.

[106]  V. Roldughin,et al.  Aggregate structure and percolation properties of metal-filled polymer films , 1999 .

[107]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[108]  D. Hasselman,et al.  Role of the Interfacial Thermal Barrier in the Effective Thermal Diffusivity/Conductivity of SiC-Fiber-Reinforced Reaction-Bonded Silicon Nitride , 1990 .

[109]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[110]  Y. Benveniste,et al.  Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .

[111]  Qiuwan Wang,et al.  Wettability and thermal performance of Ga62.5In21.5Sn16 liquid metal alloy on W-coated Cu substrates with varying film thickness , 2022, International Journal of Thermal Sciences.

[112]  Huaqing Xie,et al.  Temperature adjustable thermal conductivity and thermal contact resistance for liquid metal/paraffin/olefin block copolymer interface material , 2022, International Journal of Thermal Sciences.

[113]  Jing Liu Advanced Liquid Metal Cooling for Chip, Device and System , 2022 .

[114]  Xiaoliang Zeng,et al.  Liquid Bridge-Liquid Metal Bridging Spherical BN Largely Enhances Thermal Conductivity and Mechanical Properties of Thermal Interface Material , 2022, Journal of Materials Chemistry C.

[115]  A. Robinson,et al.  Direct manufacturing of diamond composite coatings onto silicon wafers and heat transfer performance , 2018 .

[116]  Xiaohu Yang,et al.  Advances in Liquid Metal Science and Technology in Chip Cooling and Thermal Management , 2018 .

[117]  Hong Guo,et al.  Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation , 2010 .

[118]  Rishi Raj,et al.  The effect of particle size on the thermal conductivity of ZnS/diamond composites , 1992 .

[119]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[120]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[121]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .