Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations

SummaryThis paper presents an a posteriori error analysis of the discretization methods used in computational quantum chemistry on the Hartree- Fock equations. Upper and lower bounds for the energy are obtained from any discrete approximation strategy of the solution and the estimator proposed is shown to possess further approximation virtues.

[1]  Anthony T. Patera,et al.  Asymptotic a Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: the Helmholtz , 1999 .

[2]  Christian Bachmann,et al.  A program system for ab initio MO calculations on vector and parallel processing machines. II : SCF closed-shell and open-shell iterations , 1990 .

[3]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[4]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[5]  Ivo Babuška,et al.  A-posteriori Error Estimation for the Finite Element Method , 1981 .

[6]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[7]  Barry Simon,et al.  The Hartree-Fock theory for Coulomb systems , 1977 .

[8]  Yusheng Feng,et al.  Local and pollution error estimation for finite element approximations of elliptic boundary value problems , 1996 .

[9]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[10]  Anthony T. Patera,et al.  A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem* , 1999 .

[11]  Anthony T. Patera,et al.  NUMERICAL ANALYSIS OF A POSTERIORI FINITE ELEMENT BOUNDS FOR LINEAR FUNCTIONAL OUTPUTS , 2000 .

[12]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[13]  Roland Wiest,et al.  A program system for ab initio MO calculations on vector and parallel processing machines III. Integral reordering and four-index transformation , 1991 .

[14]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[15]  E. Cancès,et al.  On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .

[16]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[17]  Pierre-Louis Lions,et al.  Solutions of Hartree-Fock equations for Coulomb systems , 1987 .

[18]  Ivo Babuška,et al.  A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .

[19]  George B. Bacskay,et al.  A quadratically convergent Hartree—Fock (QC-SCF) method. Application to closed shell systems , 1981 .

[20]  Marc Bénard,et al.  A program system for ab initio mo calculations on vector and parallel processing machines I. Evaluation of integrals , 1990 .

[21]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[22]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .