Hierarchical Assembly of α-Fe₂O₃ Nanosheets on SnO2₂Hollow Nanospheres with Enhanced Ethanol Sensing Properties.

We present the preparation of a hierarchical nanoheterostructure consisting of inner SnO2 hollow spheres (SHS) surrounded by an outer α-Fe2O3 nanosheet (FNS). Deposition of the FNS on the SHS outer surface was achieved by a facile microwave hydrothermal reaction to generate a double-shell SHS@FNS nanostructure. Such a composite with novel heterostructure acted as a sensing material for gas sensors. Significantly, the hierarchical composites exhibit excellent sensing performance toward ethanol, which is superior to the single component (SHS), mainly because of the synergistic effect and heterojunction.

[1]  Nguyen Duc Hoa,et al.  Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance , 2012 .

[2]  Juan Zhou,et al.  Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity. , 2011, Nanoscale.

[3]  Jianhui Zhu,et al.  Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors , 2015 .

[4]  Ling-Dong Sun,et al.  Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: a case of interfacial lattice compatibility. , 2005, Journal of the American Chemical Society.

[5]  Zhong Lin Wang,et al.  Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties. , 2005, Angewandte Chemie.

[6]  Jian Yang,et al.  Controlled Growth of Porous α‐Fe2O3 Branches on β‐MnO2 Nanorods for Excellent Performance in Lithium‐Ion Batteries , 2013 .

[7]  Y. Shimizu,et al.  Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases , 1996 .

[8]  X. Lou,et al.  The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid , 2012 .

[9]  Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model , 2002, cond-mat/0204427.

[10]  Ivan P. Parkin,et al.  A microstructural model of semiconducting gas sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide , 2006 .

[11]  Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes , 2011 .

[12]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[13]  M. Rumyantseva,et al.  Nanocomposites SnO2/Fe2O3: Wet chemical synthesis and nanostructure characterization , 2005 .

[14]  Ying Liu,et al.  Controllable synthesis of recyclable core-shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. , 2013, Physical chemistry chemical physics : PCCP.

[15]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[16]  Thorsten Wagner,et al.  Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor , 2009 .

[17]  Taihong Wang,et al.  Plate-like p-n heterogeneous NiO/WO₃ nanocomposites for high performance room temperature NO₂ sensors. , 2014, Nanoscale.

[18]  G. Lu,et al.  One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading , 2011 .

[19]  Xiong Wen (David) Lou,et al.  SnO₂ nanosheet hollow spheres with improved lithium storage capabilities. , 2011, Nanoscale.

[20]  Eduard Llobet,et al.  Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. , 2011, Chemical communications.

[21]  M. Falasconi,et al.  Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites , 2004 .

[22]  Xiaobo Zhang,et al.  Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes. , 2013, ACS applied materials & interfaces.

[23]  Giovanni Neri,et al.  Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method , 2008 .

[24]  Hailong Yu,et al.  Synthesis and H2S gas sensing properties of cage-like α-MoO3/ZnO composite , 2012 .

[25]  Sanjay Mathur,et al.  Miniaturized ionization gas sensors from single metal oxide nanowires. , 2011, Nanoscale.

[26]  M. Ivanovskaya,et al.  Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol☆ , 2003 .

[27]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[28]  Rafiq Ahmad,et al.  Chemical and biological sensors based on metal oxide nanostructures. , 2012, Chemical communications.

[29]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[30]  X. Lou,et al.  Double‐Shelled CoMn2O4 Hollow Microcubes as High‐Capacity Anodes for Lithium‐Ion Batteries. , 2012 .

[31]  Ming-Yen Lu,et al.  Direct Conversion of Single‐Layer SnO Nanoplates to Multi‐Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties , 2009 .

[32]  Ruiqin Q. Zhang,et al.  Engineering of Facets, Band Structure, and Gas‐Sensing Properties of Hierarchical Sn2+‐Doped SnO2 Nanostructures , 2013 .

[33]  J. Kang,et al.  Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property , 2011 .

[34]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[35]  K. Kim,et al.  Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. , 2010, Chemical communications.

[36]  F. Huang,et al.  Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO(2)/alpha-Fe(2)O(3) semiconductor nanoheterostructures. , 2010, ACS nano.

[37]  R. N. Karekar,et al.  Formulation and characterization of ZnO:Sb thick-film gas sensors , 1998 .

[38]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[39]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[40]  Y. Bando,et al.  Tailoring the Optical Properties of Epitaxially Grown Biaxial ZnO/Ge, and Coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge Heterostructures , 2007 .

[41]  Wei Zhou,et al.  Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature. , 2013, Nanoscale.

[42]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[43]  Xiumei Xu,et al.  One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures , 2014 .

[44]  Jin Li,et al.  Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing Application , 2010 .

[45]  Younan Xia,et al.  A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. , 2003, Journal of the American Chemical Society.

[46]  Ooi Kiang Tan,et al.  Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. , 2010, Nanoscale.

[47]  Norio Miura,et al.  Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides , 2000 .

[48]  C. Reddy,et al.  Preparation of Fe2O3(0.9)–SnO2(0.1) by hydrazine method: application as an alcohol sensor , 2002 .

[49]  Yoshitake Masuda,et al.  In2O3–SnO2 nano-toasts and nanorods: Precipitation preparation, formation mechanism, and gas sensitive properties , 2009 .

[50]  Makoto Egashira,et al.  High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd , 2002 .

[51]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[52]  Qing Peng,et al.  Fe2O3/ZnO core–shell nanorods for gas sensors , 2006 .

[53]  N. Yamazoe,et al.  Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors , 2014 .

[54]  Ning Han,et al.  CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor , 2011 .