Quasi-static large deformation compressive behaviour of origami-based metamaterials

[1]  Z. You,et al.  Rectangular sandwich plates with Miura-ori folded core under quasi-static loadings , 2018, Composite Structures.

[2]  Jiayao Ma,et al.  An origami-inspired structure with graded stiffness , 2018 .

[3]  Zhong You,et al.  Large deformation of an arc-Miura structure under quasi-static load , 2017 .

[4]  Zhengyi Jiang,et al.  Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review , 2017 .

[5]  Glaucio H. Paulino,et al.  Bar and hinge models for scalable analysis of origami , 2017 .

[6]  Bo Wang,et al.  Crashworthiness design for trapezoid origami crash boxes , 2017 .

[7]  R. Batra,et al.  Crush dynamics and transient deformations of elastic-plastic Miura-ori core sandwich plates , 2017 .

[8]  Jiayao Ma,et al.  Dynamic axial crushing of origami crash boxes , 2016 .

[9]  Jian S. Dai,et al.  Repelling-Screw Based Force Analysis of Origami Mechanisms , 2016 .

[10]  M. Adda-Bedia,et al.  Elastic theory of origami-based metamaterials. , 2016, Physical review. E.

[11]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[12]  Guoxing Lu,et al.  Deformation of the Miura-ori patterned sheet , 2015 .

[13]  Rui Peng,et al.  Origami of thick panels , 2015, Science.

[14]  Simon D. Guest,et al.  A Framework for the Symmetric Generalisation of the Miura-ori , 2015 .

[15]  Joseph M. Gattas,et al.  The behaviour of curved-crease foldcores under low-velocity impact loads , 2015 .

[16]  Thomas C. Hull,et al.  Programming Reversibly Self‐Folding Origami with Micropatterned Photo‐Crosslinkable Polymer Trilayers , 2015, Advanced materials.

[17]  Joseph M. Gattas,et al.  Miura-Base Rigid Origami: Parametrizations of Curved-Crease Geometries , 2014 .

[18]  Simon D. Guest,et al.  Novel stacked folded cores for blast-resistant sandwich beams , 2014 .

[19]  Xiang Zhou,et al.  Mechanical properties of Miura-based folded cores under quasi-static loads , 2014 .

[20]  Larry L. Howell,et al.  Waterbomb base: a symmetric single-vertex bistable origami mechanism , 2014 .

[21]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[22]  Goran Konjevod,et al.  Origami based Mechanical Metamaterials , 2014, Scientific Reports.

[23]  Jiayao Ma,et al.  Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation , 2014 .

[24]  Z. You,et al.  Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries , 2013 .

[25]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[26]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[27]  Yan Chen,et al.  Axial crushing of thin-walled structures with origami patterns , 2012 .

[28]  I. Minami,et al.  Surface Chemistry of Aluminium Alloy Slid against Steel Lubricated by Organic Friction Modifier in Hydrocarbon Oil , 2012 .

[29]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[30]  Tongxi Yu,et al.  Dynamic crushing strength of hexagonal honeycombs , 2010 .

[31]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[32]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[33]  Alastair Johnson,et al.  Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression , 2007 .

[34]  Tongxi Yu,et al.  Plastic Bending: Theory and Applications , 1996 .

[35]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .