Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate

Atomic-layered MoS(2) is synthesized directly on SiO(2) substrates by a scalable chemical vapor deposition method. The large-scale synthesis of an atomic-layered semiconductor directly on a dielectric layer paves the way for many facile device fabrication possibilities, expanding the important family of useful mono- or few-layer materials that possess exceptional properties, such as graphene and hexagonal boron nitride (h-BN).

[1]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[2]  Christian Kisielowski,et al.  Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. , 2011, Angewandte Chemie.

[3]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[4]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[5]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[6]  J. Gordon,et al.  MoS2 hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles. , 2011, Angewandte Chemie.

[7]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[8]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[9]  Matthias Krause,et al.  The MoS2 Nanotubes with Defect-Controlled Electric Properties , 2010, Nanoscale research letters.

[10]  V. Kravets,et al.  Fluorinated graphene: Fluorographene: A Two‐Dimensional Counterpart of Teflon (Small 24/2010) , 2010 .

[11]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[12]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[13]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[14]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[15]  M. Remškar,et al.  The Transformation Pathways of Mo6S2I8 Nanowires into Morphology-Selective MoS2 Nanostructures , 2010 .

[16]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[17]  M. Yacamán,et al.  Faceted MoS2 nanotubes and nanoflowers , 2009 .

[18]  M. Yacamán,et al.  Structural transformation of MoO3 nanobelts into MoS2 nanotubes , 2009 .

[19]  Yuyuan Tian,et al.  Dielectric screening enhanced performance in graphene FET. , 2009, Nano letters.

[20]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[21]  Zhu-de Xu,et al.  Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres , 2008 .

[22]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[23]  H. A. Therese,et al.  Synthesis of MoO3 nanostructures and their facile conversion to MoS2 fullerenes and nanotubes , 2006 .

[24]  Daqing He,et al.  Preparation and Tribological Properties of Inorganic Fullerene‐like MoS2 , 2006, Advanced Engineering Materials.

[25]  U. Pal,et al.  Graphite-incorporated MoS2 nanotubes: a new coaxial binary system. , 2005, The journal of physical chemistry. B.

[26]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  Ya Dong Li,et al.  Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. , 2003, Chemistry.

[29]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[30]  J. Bernède,et al.  MoS2 thin film synthesis by soft sulfurization of a molybdenum layer. , 1995 .

[31]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[32]  N. H. Turner,et al.  Determination of peak positions and areas from wide‐scan XPS spectra , 1990 .

[33]  Xiang-Rong Yu,et al.  Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source , 1990 .

[34]  P. D. Fleischauer,et al.  Effects of Argon-Ion Bombardment on the Basal Plan Surface of MoS2. , 1986 .

[35]  I. Chorkendorff,et al.  A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported CoMo catalysts , 1982 .

[36]  G. Seifert,et al.  SW Xα calculations and x-ray photoelectron spectra of molybdenum(II) chloride cluster compounds , 1980 .

[37]  N. Mott Electrons in glass , 1975, Nature.

[38]  R. A. Bromley The lattice vibrations of the MoS2 structure , 1971 .

[39]  T. Wieting,et al.  Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .

[40]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[41]  F. L. Deepak,et al.  Structural transformation of MoO 3 nanobelts into MoS 2 nanotubes , 2022 .