A Semianalytical Model for the Motion of the Trojan Asteroids: Proper Elements and Families

In this paper we develop a semianalytical model to describe the long-term motion of Trojan asteroids located in tadpole orbits around the L4 and L5 jovian Lagrangian points. The dynamical model is based on the spatial elliptic three-body problem, including the main secular variations of Jupiter’s orbit and the direct perturbations of the remaining outer planets. Based on ideas introduced by A. H. Jupp (1969, Astron. J. 74, 35‐43), we develop a canonical transformation which allows the transformation of the tadpole librating orbits into circulating orbits. The disturbing function is then explicitly expanded around each libration point by means of a Taylor‐Fourier asymmetric expansion. Making use of the property in which the different degrees of freedom in the Trojan problem are well separated with regard to their periods of oscillation, we are able to find approximate action-angle variables combining Hori’s method with the theory of adiabatic invariants. This procedure is applied to estimate proper elements for the sample of 533 Trojans with well determined orbits at December 2000. The errors of our semianalytical estimates are about 2‐3 times larger than those previously obtained with numerical approaches by other authors. Finally, we use these results to search for asteroidal families among the Trojan swarms. We are able to identify and confirm the existence of most of the families previously detected by Milani (1993, Celest. Mech. Dynam. Astron. 57, 59‐94). The families of Menelaus and Epeios, both around L4, are the most robust candidates to be the by-product of catastrophic disruption of larger asteroids. On the other hand, no significant family is detected around L5. c ∞ 2001 Academic Press

[1]  M. Moons,et al.  Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases , 1995 .

[2]  Bálint Érdi,et al.  Long periodic perturbations of Trojan asteroids , 1987 .

[3]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[4]  C. Murray,et al.  The effect of eccentricity and inclination on the motion near the Lagrangian points L4 and L5 , 2000 .

[5]  R. Dvorak,et al.  Trojans in Stable Chaotic Motion , 1999 .

[6]  Anne Lemaitre,et al.  Proper Elements: What are They ? , 1993 .

[7]  Alberto Cellino,et al.  Asteroid Families. I. Identification by Hierarchical Clustering and Reliability Assessment , 1990 .

[8]  Andrea Milani,et al.  The Trojan asteroid belt: Proper elements, stability, chaos and families , 1993 .

[9]  E. Everhart An efficient integrator that uses Gauss-Radau spacings , 1985 .

[10]  E. Rabe Third-order stability of the long-period Trojan librations. , 1967 .

[11]  J. Henrard,et al.  Equivalence for lie transforms , 1974 .

[12]  Francesco Marzari,et al.  Collisional Evolution of Trojan Asteroids , 1997 .

[13]  A. Milani The Trojan Asteroid Belt: Proper Elements, Stability, Chaos and Families , 1993 .

[14]  Alberto Cellino,et al.  Asteroid Famalies. II. Extension to Unnumbered Multiopposition Asteroids , 1994 .

[15]  M. Morais A secular theory for Trojan-type motion , 1999 .

[16]  P. Bretagnon Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .

[17]  W. M. Kaula,et al.  A Study of Orbits near Saturn's Triangular Lagrangian Points , 1996 .

[18]  Charalampos Skokos,et al.  Stability of the Trojan asteroids , 1997 .

[19]  S. Ferraz-Mello Dynamics of the asteroidal 2/1 resonance , 1994 .

[20]  M. Morais Hamiltonian formulation of the secular theory for Trojan-type motion , 2001 .

[21]  James Gerard Williams,et al.  Secular Perturbations in the Solar System. , 1969 .

[22]  J. Henrard,et al.  The Adiabatic Invariant in Classical Mechanics , 1993 .

[23]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[24]  E. M. Shoemaker,et al.  Trojan asteroids - Populations, dynamical structure and origin of the L4 and L5 swarms , 1989 .

[25]  M. Tsuchida,et al.  The high-eccentricity asymmetric expansion of the disturbing function for non-planar resonant problems , 1998 .

[26]  Andrea Milani,et al.  Secular perturbation theory and computation of asteroid proper elements , 1990 .

[27]  A. Milani,et al.  Fundamental frequencies and small divisors in the orbits of the outer planets , 1989 .

[28]  B. Érdi The perturbations of the orbital elements of Trojan asteriods , 1981 .

[29]  Alessandro Morbidelli,et al.  Proper elements for highly inclined asteroidal orbits , 1994 .

[30]  M. Moons,et al.  Secular Resonances in Mean Motion Commensurabilities: The 2/1 and 3/2 Cases , 1993 .

[31]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[32]  R. Bien,et al.  Three characteristic orbital parameters for the Trojan group of asteroids , 1987 .

[33]  R. Bien,et al.  Trojan Asteroids: Relations between Dynamical Parameters , 1987 .

[34]  F. Marzari,et al.  The Role of Secular Resonances in the History of Trojans , 2000 .

[35]  S. Ferraz-Mello,et al.  The very-high-eccentricity asymmetric expansion of the disturbing function near resonances of any order , 1989 .

[36]  J. Henrard,et al.  A semi-numerical perturbation method for separable hamiltonian systems , 1990 .

[37]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[38]  E. Shoemaker,et al.  Dynamical evolution of Jupiter's Trojan asteroids , 1997, Nature.

[39]  A. Jupp A Solution of the Ideal Resonance Problem for the Case of Libration , 1969 .

[40]  Andrea Milani,et al.  Asteroid Mean Elements: Higher Order and Iterative Theories , 1998 .