Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches

We present a general formulation for incompressible fluid flow analysis using the finite element method (FEM). The standard Eulerian formulation is described first. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the finite calculus (FIC) method. A simple extension of the fluid flow equations to an arbitrary Lagrangian–Eulerian (ALE) frame adequate for treating fluid–structure interaction problems is briefly presented. A fully Lagrangian formulation called the particle finite element method (PFEM) is also described. The PFEM is particularly attractive for fluid–structure interaction problems involving large motions of the free surface and breaking waves. Examples of application of the Eulerian, the ALE and the fully lagrangian PFEM formulations are presented.

[1]  Ramon Codina,et al.  A general algorithm for compressible and incompressible flows. Part III: The semi‐implicit form , 1998 .

[2]  Eugenio Oñate,et al.  COMPUTATION OF THE STABILIZATION PARAMETER FOR THE FINITE ELEMENT SOLUTION OF ADVECTIVE-DIFFUSIVE PROBLEMS , 1997 .

[3]  M. Ortiz,et al.  Lagrangian finite element analysis of Newtonian fluid flows , 1998 .

[4]  Eugenio Oñate,et al.  A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .

[5]  Rainald Löhner,et al.  An unstructured grid-based, parallel free surface solver , 1997 .

[6]  O. C. Zienkiewicz,et al.  The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .

[7]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[8]  O. C. Zienkiewicz,et al.  An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .

[9]  Gabriel Bugeda,et al.  A simple method for automatic update of finite element meshes , 2000 .

[10]  Eugenio Oñate,et al.  A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .

[11]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[12]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[13]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[14]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[15]  Eugenio Oñate,et al.  A residual correction method based on finite calculus , 2003 .

[16]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[17]  Eugenio Oñate,et al.  A finite point method for incompressible flow problems , 2000 .

[18]  Eugenio Oñate,et al.  Recent developments in finite element analysis , 1994 .

[19]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[20]  Eugenio Oñate,et al.  Possibilities of finite calculus in computational mechanics , 2004 .

[21]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[22]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[23]  Eugenio Oñate,et al.  Finite element solution of free‐surface ship‐wave problems , 1999 .

[24]  Eugenio Oñate,et al.  Particle finite element method in fluid-mechanics including thermal convection-diffusion , 2005 .

[25]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[26]  Mario A. Storti,et al.  A Petrov-Galerkin formulation for advection-reaction-diffusion problems , 1996 .

[27]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[28]  Eugenio Oñate,et al.  Polyhedrization of an arbitrary 3D point set , 2003 .

[29]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[30]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[31]  Ramon Codina,et al.  Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes , 2004 .

[32]  D. Wilcox Turbulence modeling for CFD , 1993 .

[33]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[34]  J. Z. Zhu,et al.  The finite element method , 1977 .

[35]  E. Onate,et al.  An Unstructured Finite Element Solver for Ship Hydrodynamics Problems , 2003 .

[36]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .

[37]  Ramon Codina,et al.  A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .

[38]  Steady state incompressible flows using explicit schemes with an optimal local preconditioning , 1995 .

[39]  M. Hafez,et al.  Frontiers of Computational Fluid Dynamics 2002 , 2001 .

[40]  David L. Whitfield,et al.  Implicit Lower-Upper/Approximate-Factorization Schemes for Incompressible Flows , 1996 .

[41]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[42]  Eugenio Oñate,et al.  A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .

[43]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[44]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[45]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[46]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[47]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[48]  Mario Alberto Storti,et al.  Stability analysis of mixed finite element formulations with special mention of equal‐order interpolations , 1995 .

[49]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[50]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[51]  E. Oñate,et al.  An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients , 1998 .

[52]  Eugenio Oñate,et al.  Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach , 2006 .

[53]  Eugenio Oñate,et al.  A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces , 1999 .

[54]  Eugenio Oñate Ibáñez de Navarra,et al.  An advanced finite element method for fluid dynamic analysis of America's Cup boats , 2002 .

[55]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[56]  Chunhua Sheng,et al.  Multigrid algorithm for three-dimensional incompressible high-Reynolds number turbulent flows , 1995 .

[57]  E. Oñate,et al.  The extended Delaunay tessellation , 2003 .

[58]  E. Oñate,et al.  Finite calculus formulation for incompressible solids using linear triangles and tetrahedra , 2004 .

[59]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[60]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[61]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[62]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[63]  Eugenio Oñate,et al.  A finite element formulation for incompressible flow problems using a generalized streamline operator , 1997 .

[64]  O. C. Zienkiewicz,et al.  CBS versus GLS stabilization of the incompressible Navier–Stokes equations and the role of the time step as stabilization parameter , 2001 .