Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches
暂无分享,去创建一个
Eugenio Oñate | F. Del Pin | S. R. Idelsohn | E. Oñate | S. Idelsohn | F. Pin | Julio García | Julio Garcia
[1] Ramon Codina,et al. A general algorithm for compressible and incompressible flows. Part III: The semi‐implicit form , 1998 .
[2] Eugenio Oñate,et al. COMPUTATION OF THE STABILIZATION PARAMETER FOR THE FINITE ELEMENT SOLUTION OF ADVECTIVE-DIFFUSIVE PROBLEMS , 1997 .
[3] M. Ortiz,et al. Lagrangian finite element analysis of Newtonian fluid flows , 1998 .
[4] Eugenio Oñate,et al. A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .
[5] Rainald Löhner,et al. An unstructured grid-based, parallel free surface solver , 1997 .
[6] O. C. Zienkiewicz,et al. The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .
[7] Franco Brezzi,et al. $b=\int g$ , 1997 .
[8] O. C. Zienkiewicz,et al. An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .
[9] Gabriel Bugeda,et al. A simple method for automatic update of finite element meshes , 2000 .
[10] Eugenio Oñate,et al. A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .
[11] Ramon Codina,et al. Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .
[12] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[13] Peter Hansbo,et al. A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .
[14] Eugenio Oñate,et al. The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .
[15] Eugenio Oñate,et al. A residual correction method based on finite calculus , 2003 .
[16] S. Mittal,et al. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .
[17] Eugenio Oñate,et al. A finite point method for incompressible flow problems , 2000 .
[18] Eugenio Oñate,et al. Recent developments in finite element analysis , 1994 .
[19] Peter Hansbo,et al. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .
[20] Eugenio Oñate,et al. Possibilities of finite calculus in computational mechanics , 2004 .
[21] E. Oñate,et al. The particle finite element method. An overview , 2004 .
[22] Eugenio Oñate,et al. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .
[23] Eugenio Oñate,et al. Finite element solution of free‐surface ship‐wave problems , 1999 .
[24] Eugenio Oñate,et al. Particle finite element method in fluid-mechanics including thermal convection-diffusion , 2005 .
[25] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[26] Mario A. Storti,et al. A Petrov-Galerkin formulation for advection-reaction-diffusion problems , 1996 .
[27] Eugenio Oñate,et al. The meshless finite element method , 2003 .
[28] Eugenio Oñate,et al. Polyhedrization of an arbitrary 3D point set , 2003 .
[29] T. Tezduyar,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .
[30] Thomas J. R. Hughes,et al. Encyclopedia of computational mechanics , 2004 .
[31] Ramon Codina,et al. Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes , 2004 .
[32] D. Wilcox. Turbulence modeling for CFD , 1993 .
[33] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1994, ACM Trans. Graph..
[34] J. Z. Zhu,et al. The finite element method , 1977 .
[35] E. Onate,et al. An Unstructured Finite Element Solver for Ship Hydrodynamics Problems , 2003 .
[36] R. Codina. Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .
[37] Ramon Codina,et al. A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .
[38] Steady state incompressible flows using explicit schemes with an optimal local preconditioning , 1995 .
[39] M. Hafez,et al. Frontiers of Computational Fluid Dynamics 2002 , 2001 .
[40] David L. Whitfield,et al. Implicit Lower-Upper/Approximate-Factorization Schemes for Incompressible Flows , 1996 .
[41] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[42] Eugenio Oñate,et al. A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .
[43] Eugenio Oñate,et al. Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .
[44] S. Koshizuka,et al. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .
[45] Eugenio Oñate,et al. A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .
[46] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .
[47] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .
[48] Mario Alberto Storti,et al. Stability analysis of mixed finite element formulations with special mention of equal‐order interpolations , 1995 .
[49] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[50] O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .
[51] E. Oñate,et al. An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients , 1998 .
[52] Eugenio Oñate,et al. Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach , 2006 .
[53] Eugenio Oñate,et al. A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces , 1999 .
[54] Eugenio Oñate Ibáñez de Navarra,et al. An advanced finite element method for fluid dynamic analysis of America's Cup boats , 2002 .
[55] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[56] Chunhua Sheng,et al. Multigrid algorithm for three-dimensional incompressible high-Reynolds number turbulent flows , 1995 .
[57] E. Oñate,et al. The extended Delaunay tessellation , 2003 .
[58] E. Oñate,et al. Finite calculus formulation for incompressible solids using linear triangles and tetrahedra , 2004 .
[59] T. F. Russell,et al. NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .
[60] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[61] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[62] J. Donea. A Taylor–Galerkin method for convective transport problems , 1983 .
[63] Eugenio Oñate,et al. A finite element formulation for incompressible flow problems using a generalized streamline operator , 1997 .
[64] O. C. Zienkiewicz,et al. CBS versus GLS stabilization of the incompressible Navier–Stokes equations and the role of the time step as stabilization parameter , 2001 .