Interactive Direct Volume Rendering with Many-light Methods and Transmittance Caching

In this paper we present an interactive global illumination method for Direct Volume Rendering (DVR) based on the many-light approach, a class of global illumination methods which gained much interest recently. We extend these methods to handle transfer function and volume density updates efficiently in order to foster ability of interactive volume exploration. Global illumination techniques accounting for all light transport phenomena are typically computationally too expensive for interactive DVR. Many-light methods represent the light transport in a volume by determining a set of virtual light sources whose direct illumination and single scattering to a view ray approximate full global illumination. Our technique reduces computation caused by transfer function changes by recomputing the contribution of these virtual lights, and rescaling or progressively updating their volumetric shadow maps and locations. We discuss these optimizations in the context of DVR and demonstrate their application to interactive rendering.

[1]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[2]  Kwan-Liu Ma,et al.  Real-Time Volume Rendering in Dynamic Lighting Environments Using Precomputed Photon Mapping , 2013, IEEE Transactions on Visualization and Computer Graphics.

[3]  Timo Ropinski,et al.  Interactive Volume Rendering with Volumetric Illumination , 2012, Eurographics.

[4]  Anton Kaplanyan,et al.  Path Space Regularization for Holistic and Robust Light Transport , 2013, Comput. Graph. Forum.

[5]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[6]  Andrew Lauritzen,et al.  Adaptive Volumetric Shadow Maps , 2010, Comput. Graph. Forum.

[7]  Timo Ropinski,et al.  Historygrams: Enabling Interactive Global Illumination in Direct Volume Rendering using Photon Mapping , 2012, IEEE Transactions on Visualization and Computer Graphics.

[8]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[9]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[10]  Kwan-Liu Ma,et al.  Fast global illumination for interactive volume visualization , 2013, I3D '13.

[11]  Anders Ynnerman,et al.  Efficient Visibility Encoding for Dynamic Illumination in Direct Volume Rendering , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  Timo Ropinski,et al.  Advanced Light Material Interaction for Direct Volume Rendering , 2010, VG@Eurographics.

[13]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[14]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[15]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[16]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .

[17]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[18]  Derek Nowrouzezahrai,et al.  Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.

[19]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[20]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[21]  Carsten Dachsbacher,et al.  Screen-space bias compensation for interactive high-quality global illumination with virtual point lights , 2011, SI3D.

[22]  Charl P. Botha,et al.  Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework , 2012, PloS one.

[23]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[24]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[25]  Christof Rezk Salama,et al.  GPU-Based Monte-Carlo Volume Raycasting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[26]  Bruce Walter,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, ACM Trans. Graph..

[27]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[28]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[29]  Carsten Dachsbacher,et al.  Approximate Bias Compensation for Rendering Scenes with Heterogeneous Participating Media , 2012, Comput. Graph. Forum.

[30]  Timo Ropinski,et al.  Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding , 2008, Comput. Graph. Forum.