Sparse partial least squares regression for simultaneous dimension reduction and variable selection

Summary.  Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well‐known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data.

[1]  John W. Pratt,et al.  On Interchanging Limits and Integrals , 1960 .

[2]  A Criterion for Stepwise Regression , 1976 .

[3]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[4]  Philip E. Gill,et al.  Practical optimization , 1981 .

[5]  I. Helland Partial least squares regression and statistical models , 1990 .

[6]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[7]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[8]  I. Helland,et al.  Comparison of Prediction Methods when Only a Few Components are Relevant , 1994 .

[9]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  C. Goutis Partial least squares algorithm yields shrinkage estimators , 1996 .

[12]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[13]  Sijmen de Jong,et al.  The objective function of partial least squares regression , 1998 .

[14]  Petre Stoica,et al.  Partial Least Squares: A First‐order Analysis , 1998 .

[15]  Neil A. Butler,et al.  The peculiar shrinkage properties of partial least squares regression , 2000 .

[16]  Prasad A. Naik,et al.  Partial least squares estimator for single‐index models , 2000 .

[17]  I. Helland Model Reduction for Prediction in Regression Models , 2000 .

[18]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[19]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[20]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[21]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[22]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[23]  Bogdan E. Popescu,et al.  Gradient Directed Regularization for Linear Regression and Classi…cation , 2004 .

[24]  Wei Pan,et al.  Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares , 2004, Bioinform..

[25]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[26]  I. Johnstone,et al.  Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.

[27]  M. Kosorok,et al.  Marginal asymptotics for the “large $p$, small $n$” paradigm: With applications to microarray data , 2005, math/0508219.

[28]  B. Nadler,et al.  The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration , 2005 .

[29]  Ronald R. Coifman,et al.  The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration , 2005 .

[30]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[31]  A. Boulesteix,et al.  Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach , 2005, Theoretical Biology and Medical Modelling.

[32]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[33]  R. Tibshirani,et al.  Prediction by Supervised Principal Components , 2006 .

[34]  Hongzhe Li,et al.  Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..

[35]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[36]  Nicole Krämer,et al.  An overview on the shrinkage properties of partial least squares regression , 2007, Comput. Stat..

[37]  Anne-Laure Boulesteix,et al.  Partial least squares: a versatile tool for the analysis of high-dimensional genomic data , 2006, Briefings Bioinform..

[38]  L. Kraal,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2009 .

[39]  I. Johnstone,et al.  Sparse Principal Components Analysis , 2009, 0901.4392.

[40]  Hyonho Chun,et al.  Expression Quantitative Trait Loci Mapping With Multivariate Sparse Partial Least Squares Regression , 2009, Genetics.

[41]  Barbara Guardabascio,et al.  A Medium-N Approach to Macroeconomic Forecasting , 2010 .

[42]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.