A novel digital logic implementation approach on nanocrossbar arrays using memristor-based multiplexers

Abstract This paper presents and evaluates a novel multiplexer (MUX) composed of memristive devices and nanowire crossbar arrays. The switching behavior of memristors is employed to reveal the desired output state. By applying a sequence of appropriate voltage pulses to the developed MUX, the output is derived and can be transferred through read/write CMOS circuitry. The performance is verified with the SPICE simulator including a threshold-type memristor model. Using the proposed MUXes instead of memristor-based NAND gates, the routing effects that are a major challenge for implementing combinational logic in hybrid circuits can be reduced. Our evaluation results show that both density and delay are effectively improved in pure-MUX-based fabrics.

[1]  Earl E. Swartzlander,et al.  Memristor-based arithmetic , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[2]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[3]  D. Strukov,et al.  Resistive switching phenomena in thin films: Materials, devices, and applications , 2012 .

[4]  Garrett S. Rose,et al.  A read-monitored write circuit for 1T1M multi-level memristor memories , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[5]  Dmitri B. Strukov,et al.  Hybrid CMOS/memristor circuits , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[6]  Sung-Mo Kang,et al.  Resistive Computing: Memristors-Enabled Signal Multiplication , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[8]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Khaled N. Salama,et al.  Memristor-based memory: The sneak paths problem and solutions , 2013, Microelectron. J..

[10]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[11]  Hao Yu,et al.  Analysis and Modeling of Internal State Variables for Dynamic Effects of Nonvolatile Memory Devices , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Dmitri B. Strukov,et al.  3D CMOS-memristor hybrid circuits: devices, integration, architecture, and applications , 2012, ISPD '12.

[13]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[14]  Konstantin K. Likharev,et al.  Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges , 2008 .

[15]  R. Waser,et al.  Materials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM , 2011 .

[16]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Dmitri B Strukov,et al.  Four-dimensional address topology for circuits with stacked multilayer crossbar arrays , 2009, Proceedings of the National Academy of Sciences.

[18]  Sung-Mo Kang,et al.  Field Programmable Stateful Logic Array , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Y. V. Pershin,et al.  SPICE Model of Memristive Devices with Threshold , 2012, 1204.2600.

[20]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[21]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[22]  Wei Yi,et al.  AC sense technique for memristor crossbar , 2012 .

[23]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[24]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[25]  Nasser Masoumi,et al.  Design investigation of nanoelectronic circuits using crossbar-based nanoarchitectures , 2013, Microelectron. J..

[26]  Matthew D. Pickett,et al.  CMOS interface circuits for reading and writing memristor crossbar array , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[27]  Konstantin K. Likharev CMOL: Second life for silicon , 2008, Microelectron. J..

[28]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[29]  Kow-Ming Chang,et al.  The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device , 2010, Microelectron. Reliab..

[30]  Dmitri B. Strukov,et al.  Nanotechnology: Smart connections , 2011, Nature.

[31]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[32]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[33]  F. Brglez,et al.  A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN , 1985 .

[34]  Leon O. Chua,et al.  A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators , 2012, Sensors.

[35]  A. H. Shaltoot,et al.  Memristor based carry lookahead adder architectures , 2012, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS).

[36]  Leon O. Chua,et al.  The Fourth Element , 2012, Proceedings of the IEEE.

[37]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[38]  A. H. Shaltoot,et al.  Memristor-based modified recoded-multiplicand systolic serial-parallel multiplier , 2013, 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA).

[39]  Sung-Mo Kang,et al.  Reconfigurable Stateful nor Gate for Large-Scale Logic-Array Integrations , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[40]  R Stanley Williams,et al.  Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices , 2012, Nanotechnology.