Parameterized norm form equations with arithmetic progressions
暂无分享,去创建一个
[1] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[2] E. Matveev,et al. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[3] Maurice Mignotte,et al. Complete solutions of a family of quartic Thue and index form equations , 1996, Math. Comput..
[4] S. Lang. Algebraic Number Theory , 1971 .
[5] L. Vulakh. Diophantine approximation in ⁿ , 1995 .
[6] Emery Thomas,et al. Fundamental units for orders in certain cubic number fields. , 1979 .
[7] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[8] Emery Thomas,et al. Complete solutions to a family of cubic Diophantine equations , 1990 .
[9] S. Lang. Number Theory III , 1991 .
[10] A. Pethö,et al. Simplest cubic fields , 1995 .
[11] H. Davenport,et al. THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .
[12] M. Mignotte,et al. Verification of a Conjecture of E. Thomas , 1993 .
[13] A. Pethö,et al. On norm form equations with solutions forming arithmetic progressions , 2004, Publicationes Mathematicae Debrecen.
[14] Michel Laurent,et al. Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .
[15] Clemens Heuberger,et al. Thomas' Family of Thue Equations Over Imaginary Quadratic Fields , 2002, J. Symb. Comput..
[16] J. Buchmann,et al. Computation of independent units in number fields by Dirichlet’s method , 1989 .
[17] Keith O. Geddes,et al. Maple 6 Programming Guide , 2000 .