Global distribution of near-surface hydrogen on Mars

[1] Neutron data observed using the Neutron Spectrometer aboard 2001 Mars Odyssey provide a lower limit to the global inventory of Martian water-equivalent hydrogen. Hydrogen-rich deposits ranging between about 20% and 100% water-equivalent by mass are found poleward of ±50° latitude, and less rich, but significant, deposits are found at near-equatorial latitudes. The equatorial deposits between ±45° latitude range between 2% and 10% water-equivalent hydrogen by mass and reach their maximum in two regions that straddle the 0-km elevation contour. Higher water abundances, up to ∼11%, are required in subsurface regolith of some equatorial regions if the upper 10 g/cm2 of regolith is desiccated, as suggested on average by comparison of epithermal and fast neutron data. The hydrogen contents of surface soils in the latitude range between 50° and 80° north and south are equal within data uncertainties. A lower-limit estimate of the global inventory of near surface hydrogen amounts to a global water layer about 14 cm thick if the reservoir sampled from orbit is assumed to be 1 m thick.

[1]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[2]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[3]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[4]  David A. Paige,et al.  The thermal stability of near-surface ground ice on Mars , 1992, Nature.

[5]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[6]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[7]  G. Rossman,et al.  Water content of the Martian soil: Laboratory simulations of reflectance spectra , 1998 .

[8]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[9]  Paul G. Lucey,et al.  High‐energy neutrons from the Moon , 2000 .

[10]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[11]  V. Baker Water and the martian landscape , 2001, Nature.

[12]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[13]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[14]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[15]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[16]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[17]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[18]  Hugh H. Kieffer,et al.  Mars south polar spring and summer temperatures: A residual CO2 frost , 1979 .

[19]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[20]  Michael H. Carr,et al.  Mars: A water-rich planet? , 1986 .

[21]  Robert L. Tokar,et al.  CO2 frost cap thickness on Mars during northern winter and spring , 2003 .

[22]  Robert L. Tokar,et al.  Fast neutron flux spectrum aboard Mars Odyssey during cruise , 2001 .

[23]  M. Mellon,et al.  Atmospheric Corrections for Neutrons Reveal Variations in Surface Composition in the Tharsis Region , 2003 .

[24]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[25]  M. Zuber,et al.  CO2 Snow Depth and Subsurface Water-Ice Abundance in the Northern Hemisphere of Mars , 2003, Science.

[26]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[27]  M. Allen,et al.  HDO in the Martian atmosphere: implications for the abundance of crustal water. , 1988, Icarus.

[28]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[29]  B. Jakosky Mars volatile evolution: Evidence from stable isotopes , 1991 .

[30]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[31]  M. Carr D/H on Mars - Effects of floods, volcanism, impacts, and polar processes , 1990 .

[32]  Robert L. Tokar,et al.  Ice concentration and distribution near the south pole of Mars: Synthesis of odyssey and global surveyor analyses , 2002 .

[33]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[34]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[35]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[36]  L. Leshin Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201 , 2000 .

[37]  M. Mellon,et al.  Redistribution of subsurface neutrons caused by ground ice on Mars , 1993 .

[38]  Robert E. Johnson,et al.  Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .

[39]  C. P. McKay,et al.  Can Hydrous Minerals Account for the Observed Mid-Latitude Water on Mars ? , 2003 .

[40]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[41]  S. Squyres Urey prize lecture: Water on Mars , 1989 .

[42]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[43]  A. R. Tice,et al.  The analysis of water in the Martian regolith , 1979, Journal of Molecular Evolution.

[44]  F. Palluconi,et al.  Martian North Pole Summer Temperatures: Dirty Water Ice , 1976, Science.

[45]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.