Sudden death of entanglement: Classical noise effects

When a composite quantum state interacts with its surroundings, both quantum coherence of individual particles and quantum entanglement will decay. We have shown that under vacuum noise, i.e., during spontaneous emission, two-qubit entanglement may terminate abruptly in a finite time [T. Yu, J.H. Eberly, Phys. Rev. Lett. 93 (2004) 140404], a phenomenon termed entanglement sudden death (ESD). An open issue is the behavior of mixed-state entanglement under the influence of classical noise. In this paper we investigate entanglement sudden death as it arises from the influence of classical phase noise on two qubits that are initially entangled but have no further mutual interaction.

[1]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[2]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[3]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[4]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[5]  Eberly,et al.  Random-telegraph-signal theory of optical resonance relaxation with applications to free induction decay. , 1985, Physical review. A, General physics.

[6]  B. Shore,et al.  Noise in strong laser-atom interactions: Phase telegraph noise , 1984 .

[7]  B. Shore,et al.  Pre-Gaussian noise in strong laser–atom interactions , 1984 .

[8]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[9]  B. Shore,et al.  Noise in strong laser-atom interactions: Frequency fluctuations and nonexponential correlations , 1984 .

[10]  T. Yu,et al.  Qubit disentanglement and decoherence via dephasing , 2003, quant-ph/0305078.

[11]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[12]  Disentanglement by dissipative open system dynamics , 2003, quant-ph/0312099.

[13]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[14]  Bruce W. Shore,et al.  The Theory of Coherent Atomic Excitation , 1991 .

[15]  J. H. Eberly,et al.  Phonon decoherence of quantum entanglement: Robust and fragile states , 2002 .

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[17]  A. Starace,et al.  Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. , 2002, Physical review letters.

[18]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[19]  Jonathan J. Halliwell,et al.  Disentanglement and decoherence by open system dynamics , 2004 .

[20]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.