Adaptations for nocturnal and diurnal vision in the hawkmoth lamina
暂无分享,去创建一个
[1] Eric J. Warrant,et al. Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.
[2] T. Godenschwege,et al. Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.
[3] Leonidas J. Guibas,et al. A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[4] R. Menzel,et al. The identification of spectral receptor types in the retina and lamina of the dragonflySympetrum rubicundulum , 1983, Journal of comparative physiology.
[5] Basil el Jundi,et al. Implementation of pigment‐dispersing factor‐immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae , 2010, The Journal of comparative neurology.
[6] P. Simmons,et al. Differential expression of synapsin in visual neurons of the locust Schistocerca gregaria , 2004, The Journal of comparative neurology.
[7] K. Wolburg-Buchholz,et al. The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris , 1979, Cell and Tissue Research.
[8] W. Ribi,et al. Fine structure of the first optic ganglion (lamina) of the cockroach, Periplaneta americana. , 1977, Tissue & cell.
[9] S. Ott,et al. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information , 2014, The Journal of comparative neurology.
[10] J. Case,et al. Temporal adaptations in visual systems of deep-sea crustaceans , 1995 .
[11] Nicholas J. Strausfeld,et al. Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .
[12] S. R. Shaw,et al. Evolutionary remodeling in a visual system through extensive changes in the synaptic connectivity of homologous neurons , 1989, Visual Neuroscience.
[13] W. Ribi. Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. , 2004, Cell and Tissue Research.
[14] M. Heisenberg,et al. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour , 2004, The European journal of neuroscience.
[15] Bartsch,et al. Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia , 1999, The Journal of experimental biology.
[16] K. Donner,et al. Visual latency and brightness: An interpretation based on the responses of rods and ganglion cells in the frog retina , 1989, Visual Neuroscience.
[17] Eric J. Warrant,et al. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.
[18] Boschek Cb. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .
[19] Joachim Schachtner,et al. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta , 2009, The Journal of comparative neurology.
[20] A. Hughes. The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .
[21] N. Strausfeld,et al. Sign-conserving amacrine neurons in the fly's external plexiform layer , 2005, Visual Neuroscience.
[22] W. Ribi. The first optic ganglion of the bee , 1979, Cell and Tissue Research.
[23] N. Strausfeld,et al. The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.
[24] K. Donner,et al. Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.
[25] Allan W. Snyder,et al. Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.
[26] Erich Buchner,et al. Visual movement detection under light- and dark-adaptation in the fly,Musca domestica , 1979, Journal of comparative physiology.
[27] N. Strausfeld,et al. The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[28] K. Fischbach,et al. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.
[29] A. Snyder,et al. The Relationship between Visual Acuity and Illumination in the Fly, Lucilia sericata , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.
[30] M. Kaltenpoth,et al. Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). , 2007, Arthropod structure & development.
[31] G. Bruce Boschek,et al. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[32] E. Warrant,et al. The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. , 2007, Arthropod structure & development.
[33] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[34] A. Borst. Drosophila's View on Insect Vision , 2009, Current Biology.
[35] J. H. van Hateren,et al. Three modes of spatiotemporal preprocessing by eyes , 1993, Journal of Comparative Physiology A.
[36] E. Warrant. Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.
[37] H. Barlow. Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.
[38] Eric J. Warrant,et al. Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[39] S. Laughlin. Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .
[40] A. Dubs. Non-Linearity and light adaptation in the fly photoreceptor , 1981, Journal of comparative physiology.
[41] S. Laughlin,et al. Transducer noise in a photoreceptor , 1979, Nature.
[42] Dr. Willi A. Ribi,et al. The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.
[43] J. H. van Hateren,et al. A theory of maximizing sensory information , 2004, Biological Cybernetics.
[44] Santiago Ramón y Cajal,et al. Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .
[45] H. Vries. The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .
[46] Stanley Heinze,et al. Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain , 2012, The Journal of comparative neurology.
[47] W. Ribi. Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor , 1975, Cell and Tissue Research.
[48] R. Menzel,et al. Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.
[49] Wolf Huetteroth,et al. Mas‐allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: Distribution, time course, developmental regulation, and colocalization with other neuropeptides , 2008, Developmental neurobiology.
[50] Eric J Warrant,et al. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps , 2008, Journal of Experimental Biology.
[51] J. Lythgoe. The Ecology of vision , 1979 .
[52] N. Strausfeld. The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.