Adaptations for nocturnal and diurnal vision in the hawkmoth lamina

Animals use vision over a wide range of light intensities, from dim starlight to bright sunshine. For animals active in very dim light the visual system is challenged by several sources of visual noise. Adaptations in the eyes, as well as in the neural circuitry, have evolved to suppress the noise and enhance the visual signal, thereby improving vision in dim light. Among neural adaptations, spatial summation of visual signals from neighboring processing units is suggested to increase the reliability of signal detection and thus visual sensitivity. In insects, the likely neural candidates for carrying out spatial summation are the lamina monopolar cells (LMCs) of the first visual processing area of the insect brain (the lamina). We have classified LMCs in three species of hawkmoths with considerably different activity periods but very similar ecology—the diurnal Macroglossum stellatarum, the nocturnal Deilephila elpenor and the crepuscular‐nocturnal Manduca sexta. Using this classification, we investigated the anatomical adaptations of hawkmoth LMCs suited for spatial summation. We found that specific types of LMCs have dendrites extending to significantly more neighboring cartridges in the two nocturnal and crepuscular species than in the diurnal species, making these LMC types strong candidates for spatial summation. Moreover, while the absolute number of cartridges visited by the LMCs differed between the two dim‐light species, their dendritic extents were very similar in terms of visual angle, possibly indicating a limiting spatial acuity. The overall size of the lamina neuropil did not correlate with the size of its LMCs. J. Comp. Neurol. 524:160–175, 2016. © 2015 Wiley Periodicals, Inc.

[1]  Eric J. Warrant,et al.  Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.

[2]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[3]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  R. Menzel,et al.  The identification of spectral receptor types in the retina and lamina of the dragonflySympetrum rubicundulum , 1983, Journal of comparative physiology.

[5]  Basil el Jundi,et al.  Implementation of pigment‐dispersing factor‐immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae , 2010, The Journal of comparative neurology.

[6]  P. Simmons,et al.  Differential expression of synapsin in visual neurons of the locust Schistocerca gregaria , 2004, The Journal of comparative neurology.

[7]  K. Wolburg-Buchholz,et al.  The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris , 1979, Cell and Tissue Research.

[8]  W. Ribi,et al.  Fine structure of the first optic ganglion (lamina) of the cockroach, Periplaneta americana. , 1977, Tissue & cell.

[9]  S. Ott,et al.  Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information , 2014, The Journal of comparative neurology.

[10]  J. Case,et al.  Temporal adaptations in visual systems of deep-sea crustaceans , 1995 .

[11]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[12]  S. R. Shaw,et al.  Evolutionary remodeling in a visual system through extensive changes in the synaptic connectivity of homologous neurons , 1989, Visual Neuroscience.

[13]  W. Ribi Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. , 2004, Cell and Tissue Research.

[14]  M. Heisenberg,et al.  Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour , 2004, The European journal of neuroscience.

[15]  Bartsch,et al.  Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia , 1999, The Journal of experimental biology.

[16]  K. Donner,et al.  Visual latency and brightness: An interpretation based on the responses of rods and ganglion cells in the frog retina , 1989, Visual Neuroscience.

[17]  Eric J. Warrant,et al.  Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.

[18]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[19]  Joachim Schachtner,et al.  Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta , 2009, The Journal of comparative neurology.

[20]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[21]  N. Strausfeld,et al.  Sign-conserving amacrine neurons in the fly's external plexiform layer , 2005, Visual Neuroscience.

[22]  W. Ribi The first optic ganglion of the bee , 1979, Cell and Tissue Research.

[23]  N. Strausfeld,et al.  The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.

[24]  K. Donner,et al.  Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.

[25]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[26]  Erich Buchner,et al.  Visual movement detection under light- and dark-adaptation in the fly,Musca domestica , 1979, Journal of comparative physiology.

[27]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[29]  A. Snyder,et al.  The Relationship between Visual Acuity and Illumination in the Fly, Lucilia sericata , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.

[30]  M. Kaltenpoth,et al.  Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). , 2007, Arthropod structure & development.

[31]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[32]  E. Warrant,et al.  The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. , 2007, Arthropod structure & development.

[33]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[34]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[35]  J. H. van Hateren,et al.  Three modes of spatiotemporal preprocessing by eyes , 1993, Journal of Comparative Physiology A.

[36]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[37]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[38]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[40]  A. Dubs Non-Linearity and light adaptation in the fly photoreceptor , 1981, Journal of comparative physiology.

[41]  S. Laughlin,et al.  Transducer noise in a photoreceptor , 1979, Nature.

[42]  Dr. Willi A. Ribi,et al.  The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[43]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[44]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[45]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[46]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain , 2012, The Journal of comparative neurology.

[47]  W. Ribi Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor , 1975, Cell and Tissue Research.

[48]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[49]  Wolf Huetteroth,et al.  Mas‐allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: Distribution, time course, developmental regulation, and colocalization with other neuropeptides , 2008, Developmental neurobiology.

[50]  Eric J Warrant,et al.  Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps , 2008, Journal of Experimental Biology.

[51]  J. Lythgoe The Ecology of vision , 1979 .

[52]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.