Canopy height estimation with TanDEM-X in temperate and boreal forests

Abstract Various semi-empirical models for linking PolInSAR data (polarimetric synthetic aperture radar interferometry) to canopy height of vegetation exist. However, only single-polarized data were used during the TanDEM-X mission in order to create a global digital elevation model (DEM). Therefore, simplifications of the semi-empirical models have to be applied to use the PolInSAR models for canopy height estimation with single-polarized TanDEM-X data. We extracted the volume coherence from TanDEM-X acquisitions and used a linear as well as a sinc model for the estimation of canopy height, which are based on the semi-empirical Random Volume over Ground model (RVoG). Both, the linear as well as the sinc model, were applied in temperate forests of Germany and boreal forests of Canada. The estimated canopy height was validated with LiDAR based canopy height models. In general, the sinc model resulted in higher coefficients of determination R 2 from 0.08 to 0.64 and lower root mean squared errors (RMSE) between 4.8 m and 12.5 m compared to the linear model with R 2 values between 0.08 and 0.62 (RMSE = 5.4 m to 13.5 m). Higher accuracies were generally achieved in winter and with higher height of ambiguity.

[1]  Christiane Schmullius,et al.  TanDEM-X elevation model data for canopy height and aboveground biomass retrieval in a tropical peat swamp forest , 2016 .

[2]  Jens Nieschulze,et al.  Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories , 2010 .

[3]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Terje Gobakken,et al.  Estimating spruce and pine biomass with interferometric X-band SAR , 2010 .

[6]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[7]  Gerhard Krieger,et al.  Volume Decorrelation Effects in TanDEM-X Interferometric SAR Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[8]  David Miller,et al.  The TerraSAR-X Satellite , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[10]  Christiane Schmullius,et al.  TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest , 2015 .

[11]  M. Vastaranta,et al.  Tandem-X interferometry in the prediction of forest inventory attributes in managed boreal forests , 2015 .

[12]  Maurizio Santoro,et al.  Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions , 2013, Remote. Sens..

[13]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[14]  Hao Chen,et al.  Radar Forest Height Estimation in Mountainous Terrain Using Tandem-X Coherence Data , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[16]  Klaus Scipal,et al.  Assessment of a Power Law Relationship Between P-Band SAR Backscatter and Aboveground Biomass and Its Implications for BIOMASS Mission Performance , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  C. Schmullius,et al.  Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring , 2014 .

[18]  Irena Hajnsek,et al.  Large-Scale Biomass Classification in Boreal Forests With TanDEM-X Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Irena Hajnsek,et al.  Height Estimation of Boreal Forest: Interferometric Model-Based Inversion at L- and X-Band Versus HUTSCAT Profiling Scatterometer , 2007, IEEE Geoscience and Remote Sensing Letters.

[21]  Hao Chen,et al.  Forest Canopy Height Estimation Using Tandem-X Coherence Data , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Göran Ståhl,et al.  Improved Prediction of Forest Variables Using Data Assimilation of Interferometric Synthetic Aperture Radar Data , 2017 .

[23]  Alberta. Natural regions and subregions of Alberta , 2006 .

[24]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[26]  Malcolm Davidson,et al.  Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions , 2018, Remote. Sens..

[27]  Gulab Singh,et al.  Potential of Space-Borne PolInSAR for Forest Canopy Height Estimation Over India—A Case Study Using Fully Polarimetric L-, C-, and X-Band SAR Data , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  I. Woodhouse,et al.  Radar backscatter is not a \'direct measure\' of forest biomass , 2012 .

[29]  Jaan Praks,et al.  Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data , 2016, Remote. Sens..

[30]  Irena Hajnsek,et al.  Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[31]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[32]  João Roberto dos Santos,et al.  Tropical-Forest Biomass Estimation at X-Band From the Spaceborne TanDEM-X Interferometer , 2015, IEEE Geoscience and Remote Sensing Letters.

[33]  Stefan Erasmi,et al.  High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data , 2017, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.

[34]  G. Sánchez‐Azofeifa,et al.  Monitoring secondary tropical forests using space-borne data: Implications for Central America , 2003 .

[35]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  G. Krieger,et al.  The global forest/non-forest map from TanDEM-X interferometric SAR data , 2018 .

[38]  Laurent Ferro-Famil,et al.  Analysis of seasonal effects on forest parameter estimation of Indian deciduous forest using TerraSAR-X PolInSAR acquisitions , 2017 .

[39]  Jaan Praks,et al.  LIDAR-Aided SAR Interferometry Studies in Boreal Forest: Scattering Phase Center and Extinction Coefficient at X- and L-Band , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[41]  Gerhard Krieger,et al.  Coherence evaluation of TanDEM-X interferometric data , 2012 .

[42]  Stefan Erasmi,et al.  Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[43]  Jaan Praks,et al.  Seasonal Differences in Forest Height Estimation From Interferometric TanDEM-X Coherence Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[45]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[46]  Paul Magdon,et al.  Evaluating the Potential of ALS Data to Increase the Efficiency of Aboveground Biomass Estimates in Tropical Peat-Swamp Forests , 2018, Remote. Sens..

[47]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[48]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[49]  Lars M. H. Ulander,et al.  Estimation of Forest Height and Canopy Density From a Single InSAR Correlation Coefficient , 2015, IEEE Geoscience and Remote Sensing Letters.