Consistent Dynamic Mode Decomposition

We propose a new method for computing Dynamic Mode Decomposition (DMD) evolution matrices, which we use to analyze dynamical systems. Unlike the majority of existing methods, our approach is based on a variational formulation consisting of data alignment penalty terms and constitutive orthogonality constraints. Our method does not make any assumptions on the structure of the data or their size, and thus it is applicable to a wide range of problems including non-linear scenarios or extremely small observation sets. In addition, our technique is robust to noise that is independent of the dynamics and it does not require input data to be sequential. Our key idea is to introduce a regularization term for the forward and backward dynamics. The obtained minimization problem is solved efficiently using the Alternating Method of Multipliers (ADMM) which requires two Sylvester equation solves per iteration. Our numerical scheme converges empirically and is similar to a provably convergent ADMM scheme. We compare our approach to various state-of-the-art methods on several benchmark dynamical systems.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[4]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[5]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[6]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[7]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[8]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[9]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[10]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[11]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[12]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[13]  H. Sung,et al.  Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations , 2011 .

[14]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[15]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[16]  L. Massa,et al.  Dynamic mode decomposition analysis of detonation waves , 2012 .

[17]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[18]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[19]  P. Goulart,et al.  Optimal mode decomposition for unsteady flows , 2013, Journal of Fluid Mechanics.

[20]  S. Bagheri Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum , 2014 .

[21]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[22]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[23]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[24]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[25]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[26]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[27]  R. Leroux,et al.  Dynamic mode decomposition for non-uniformly sampled data , 2016 .

[28]  Davide Eynard,et al.  Coupled Functional Maps , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[29]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[30]  Clarence W. Rowley,et al.  Improving separation control with noise-robust variants of dynamic mode decomposition , 2016 .

[31]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.

[32]  Zlatko Drmac,et al.  Data Driven Modal Decompositions: Analysis and Enhancements , 2017, SIAM J. Sci. Comput..

[33]  J. Nathan Kutz,et al.  Variable Projection Methods for an Optimized Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[34]  Hisaichi Shibata,et al.  Dynamic mode decomposition using a Kalman filter for parameter estimation , 2018, AIP Advances.

[35]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[36]  Taku Nonomura,et al.  Extended-Kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising , 2018, PloS one.

[37]  Wenbo Gao,et al.  ADMM for multiaffine constrained optimization , 2018, Optim. Methods Softw..