Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement
暂无分享,去创建一个
[1] Daniel Peterseim,et al. Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..
[2] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[3] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[4] Carlotta Giannelli,et al. Complexity of hierarchical refinement for a class of admissible mesh configurations , 2015, Comput. Aided Geom. Des..
[5] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[6] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[7] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[8] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[9] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[10] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[11] Giancarlo Sangalli,et al. Unstructured spline spaces for isogeometric analysis based on spline manifolds , 2015, Comput. Aided Geom. Des..
[12] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[13] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[14] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[15] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[16] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[17] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[18] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[19] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[20] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[21] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .