Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement

This paper addresses the linear independence of T-splines that correspond to refinements of three-dimensional tensor-product meshes. We give an abstract definition of analysis-suitability and prove that it is equivalent to dual-compatibility, which guarantees linear independence of the T-spline blending functions. In addition, we present a local refinement algorithm that generates analysis-suitable meshes and has linear computational complexity in terms of the number of marked and generated mesh elements.

[1]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[2]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[3]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[4]  Carlotta Giannelli,et al.  Complexity of hierarchical refinement for a class of admissible mesh configurations , 2015, Comput. Aided Geom. Des..

[5]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[6]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[7]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[8]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[9]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[10]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[11]  Giancarlo Sangalli,et al.  Unstructured spline spaces for isogeometric analysis based on spline manifolds , 2015, Comput. Aided Geom. Des..

[12]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[13]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[14]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[15]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[16]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[17]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[18]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[19]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[20]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[21]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .