SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS

We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. and used in the cosmological analyses of Davis et al. and Wood-Vasey et al. The sample represents 273 hr of spectroscopic observations with 6.5-10 m class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 184 spectra of 156 objects. Combining this sample with that of Matheson et al., we have a total sample of 329 spectra of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.

[1]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[2]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[3]  J. Walsh,et al.  Extracting clean supernova spectra - Towards a quantitative analysis of high-redshift Type Ia supernova spectra , 2004, astro-ph/0410406.

[4]  A. Filippenko,et al.  The type Ic (helium-poor Ib) supernova 1987M - Transition to the supernebular phase , 1990 .

[5]  Claudia Winge,et al.  SN 1992A : ultraviolet and optical studies based on HST, IUE and CTIO observations , 1993 .

[6]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[7]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[8]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[9]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[10]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[11]  A. Filippenko,et al.  Type Ia Supernovae and Cosmology , 2004, astro-ph/0410609.

[12]  W. M. Wood-Vasey,et al.  Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts , 2005, astro-ph/0510089.

[13]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[14]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[15]  Tyson Hare,et al.  IMACS: the wide-field imaging spectrograph on Magellan-Baade , 2006, SPIE Astronomical Telescopes + Instrumentation.

[16]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[17]  W. M. Wood-Vasey,et al.  The Type Ia Supernova 1999aw: A Probable 1999aa-like Event in a Low-Luminosity Host Galaxy , 2002, astro-ph/0207409.

[18]  Classification of Supernovae , 2003, astro-ph/0301107.

[19]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[20]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[21]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[22]  R. Kirshner,et al.  Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T , 1992 .

[23]  A. Filippenko,et al.  Supernova 1987K: Type II in Youth, Type Ib in Old Age , 1988 .

[24]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[25]  Spectroscopic observations and analysis of the peculiar SN 1999aa , 2004, astro-ph/0404393.

[26]  Thomas Matheson,et al.  Not Color‐Blind: Using Multiband Photometry to Classify Supernovae , 2002 .

[27]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[28]  Harry L. Shipman,et al.  White Dwarfs: Cosmological and Galactic Probes , 2005 .

[29]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[30]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[31]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[32]  Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae , 1997, astro-ph/9707260.

[33]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[34]  Titus J. Galama,et al.  Supernovae and gamma-Ray Bursters , 2003 .

[35]  D. Fabricant,et al.  The FAST Spectrograph for the Tillinghast Telescope , 1998 .

[36]  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[37]  David W. Gellatly,et al.  A LOW-DISPERSION SURVEY SPECTROGRAPH (LDSS-2) FOR THE WILLIAM HERSCHEL TELESCOPE , 1994 .

[38]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[39]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[40]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[41]  L. Ho,et al.  The ``Type IIb'' Supernova 1993J in M81: A Close Relative of Type Ib Supernovae , 1993 .

[42]  N. B. Suntzeff,et al.  Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.

[43]  D. Maoz,et al.  Photometric Identification of Young Stripped‐Core Supernovae , 2004, astro-ph/0403296.

[44]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[45]  M. S. Burns,et al.  Spectroscopic confirmation of high-redshift supernovae with the ESO VLT , 2004, astro-ph/0410506.

[46]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[47]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[48]  Redshift-independent distances to type Ia supernovae , 2004, astro-ph/0408097.

[49]  Ryan Chornock,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[50]  I. Hook,et al.  Gemini-north multiobject spectrograph integration, test, and commissioning , 2003, SPIE Astronomical Telescopes + Instrumentation.

[51]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[52]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[53]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[54]  P. Nugent,et al.  On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae , 1993 .

[55]  R. Weymann,et al.  A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .

[56]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[57]  Detailed analysis of early to late-time spectra of supernova 1993j , 2000, astro-ph/0006264.

[58]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[59]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[60]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[61]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[62]  K. Glazebrook,et al.  Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.