How Grossone Can Be Helpful to Iteratively Compute Negative Curvature Directions
暂无分享,去创建一个
[1] Giovanni Fasano,et al. Conjugate gradient (CG)-type method for the solution of Newton's equation within optimization frameworks , 2004, Optim. Methods Softw..
[2] Yaroslav D. Sergeyev,et al. On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales , 2018, Commun. Nonlinear Sci. Numer. Simul..
[3] Yaroslav D. Sergeyev,et al. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems , 2017 .
[4] Massimo Roma,et al. Iterative computation of negative curvature directions in large scale optimization , 2007, Comput. Optim. Appl..
[5] Manlio Gaudioso,et al. Numerical infinitesimals in a variable metric method for convex nonsmooth optimization , 2018, Appl. Math. Comput..
[6] Danny C. Sorensen,et al. On the use of directions of negative curvature in a modified newton method , 1979, Math. Program..
[7] Yaroslav D. Sergeyev,et al. Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming , 2018, Comput. Optim. Appl..
[8] G. Fasano. Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 1: Theory , 2005 .
[9] Renato De Leone,et al. Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications , 2018, Appl. Math. Comput..