Efficient electrical switching of exciton states for valley contrast manipulation in two-dimensional perovskite/monolayer WS2 heterostructures

The coupled spin-valley physics in transition metal dichalcogenides (TMDs) endows exciton states with valley degrees of freedom, making them promising for valleytronic applications in TMDs monolayers and/or their heterostructures. Although the valley dynamics of intralayer and interlayer excitons (IXs) have been studied, efficient manipulation of valley pseudospins by switching exciton states remains elusive. Therefore, it is of great importance to effectively tune the exciton states to obtain practical valley polarization switches for valley encoding. Here, we demonstrate the electrical switching of exciton emission with highly variable valley polarization mediated by charged IXs (CIXs) in the heterostructure of monolayer WS 2 and two-dimensional (2D) perovskite, irrespective of lattice constants, the rotational and translational alignment. The formation of IXs is identified by photoluminescence excitation (PLE) and photoluminescence (PL) studies, which can be further electrically tuned from positively charged to negatively charged depending on the electrostatic doping level of monolayer WS 2 . Importantly, we demonstrate an electrical switching from type-Ⅱ to type-Ⅰ band alignment, manifesting as a change in the PL profile from CIX to charged intralayer exciton emission. Such transition induces a large contrast in valley polarization between the two exciton states, enabling the reversible electrically regulated valley polarization switch with a maximum ON/OFF ratio of 15.8. Our study provides an alternative mechanism to achieve valley polarization switching with great simplicity for valleytronics and the electrical control

[1]  H. Deng,et al.  Emerging exciton physics in transition metal dichalcogenide heterobilayers , 2022, Nature Reviews Materials.

[2]  Kenji Watanabe,et al.  Interlayer exciton complexes in bilayer MoS2 , 2022, Physical Review B.

[3]  A. Kis,et al.  Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics , 2022, Nature Reviews Materials.

[4]  C. Ning,et al.  Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons , 2022, Light, science & applications.

[5]  A. Wee,et al.  Upconversion Photovoltaic Effect of WS2/2D Perovskite Heterostructures by Two-Photon Absorption. , 2021, ACS nano.

[6]  K. Novoselov,et al.  Layer-engineered interlayer excitons , 2019, Science Advances.

[7]  D. Smirnov,et al.  Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes , 2020, 2012.04022.

[8]  S. Forrest,et al.  Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers , 2020, Nature Communications.

[9]  X. Duan,et al.  Manipulation of Valley Pseudospin by Selective Spin Injection in Chiral Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures. , 2020, ACS nano.

[10]  G. Eda,et al.  Optoelectronic Properties of a van der Waals WS2 Monolayer/2D Perovskite Vertical Heterostructure. , 2020, ACS applied materials & interfaces.

[11]  G. Eda,et al.  Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS2. , 2020, ACS nano.

[12]  Dehui Li,et al.  Robust Interlayer Coupling in Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures. , 2020, ACS nano.

[13]  F. Miao,et al.  Room-temperature valleytronic transistor , 2020, Nature Nanotechnology.

[14]  Qi Jie Wang,et al.  Author Correction: High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection , 2021, Nature Nanotechnology.

[15]  Kenji Watanabe,et al.  Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. , 2020, Nano letters.

[16]  Kenji Watanabe,et al.  Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure , 2020, Nature Communications.

[17]  M. Yuan,et al.  Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape , 2020, Nature Communications.

[18]  M. Lukin,et al.  Electrically Tunable Valley Dynamics in Twisted WSe_{2}/WSe_{2} Bilayers. , 2019, Physical review letters.

[19]  J. Howarth,et al.  Design of van der Waals interfaces for broad-spectrum optoelectronics , 2019, Nature Materials.

[20]  Hongmei Luo,et al.  Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron-Phonon Interaction. , 2019, The journal of physical chemistry letters.

[21]  Jing Zhang,et al.  Engineering Valley Polarization of Monolayer WS2 : A Physical Doping Approach. , 2019, Small.

[22]  E. Tutuc,et al.  Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure , 2019, Physical Review B.

[23]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[24]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[25]  M. Kanatzidis,et al.  Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. , 2018, Physical review letters.

[26]  Xiaodong Xu,et al.  Interlayer valley excitons in heterobilayers of transition metal dichalcogenides , 2018, Nature Nanotechnology.

[27]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[28]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[29]  Jonghwan Kim,et al.  Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures , 2016, Science Advances.

[30]  P. Ajayan,et al.  Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures , 2016, Nature Communications.

[31]  G. Duscher,et al.  Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. , 2016, ACS nano.

[32]  C. Robert,et al.  Exciton radiative lifetime in transition metal dichalcogenide monolayers , 2016, 1603.00277.

[33]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[34]  G. Eda,et al.  Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures. , 2015, Nano letters.

[35]  C. Strunk,et al.  Identification of excitons, trions and biexcitons in single‐layer WS2 , 2015, 1507.01342.

[36]  Hiroki Hibino,et al.  Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. , 2015, ACS nano.

[37]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[38]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[39]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[40]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[41]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[42]  T. Taniguchi,et al.  Photoinduced doping in heterostructures of graphene and boron nitride. , 2014, Nature nanotechnology.

[43]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[44]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[45]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[46]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[47]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[48]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[49]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[50]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[51]  Koteles,et al.  Transformation of spatially direct to spatially indirect excitons in coupled double quantum wells. , 1988, Physical review. B, Condensed matter.