Constant In-Band Group-Delay Acoustic-Wave-Lumped-Element-Resonator-Based Bandpass Filters and Diplexers

The RF design of acoustic-wave (AW)-resonator-based bandpass filters (BPFs) with constant in-band group delay (<inline-formula> <tex-math notation="LaTeX">$\tau _{g}$ </tex-math></inline-formula>) and analog transfer-function reconfigurability is presented. The proposed filter concept is based on <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> identical acoustic-wave-lumped-element resonators (AWLRs) that are electromagnetically coupled through impedance inverters and result in quasi-elliptic-type transfer functions shaped by <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> poles and <inline-formula> <tex-math notation="LaTeX">$2N$ </tex-math></inline-formula> transmission zeros (TZs). Unlike conventional ladder- or lattice-type AW-resonator filter configurations, they facilitate: 1) flat in-band <inline-formula> <tex-math notation="LaTeX">$\tau _{g}$ </tex-math></inline-formula> that does not depend on the electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">$k_{t}^{2}$ </tex-math></inline-formula>) of its constituent AW resonators and does not require the incorporation of lossy elements; 2) passbands with fractional bandwidths (FBWs) that can exceed <inline-formula> <tex-math notation="LaTeX">$k_{t}^{2}$ </tex-math></inline-formula>; and 3) continuous analog-type FBW tuning. The operating principles of the devised concept are presented through two different filter architectures that, respectively, present advantages in terms of size and FBW tuning and are subsequently extended to the design of RF diplexers. They are experimentally verified through the following prototypes: 1) a three-pole/six-TZ BPF that is centered at 418 MHz and exhibits bandwidth (BW) of 0.3 MHz, minimum in-band insertion loss of 2.1 dB (i.e., effective quality factor <inline-formula> <tex-math notation="LaTeX">$Q_{\mathrm {eff}}$ </tex-math></inline-formula> of 9000), and in-band <inline-formula> <tex-math notation="LaTeX">$\tau _{g}$ </tex-math></inline-formula> between <inline-formula> <tex-math notation="LaTeX">$1.78 \pm 0.02~ \mu \text{s}$ </tex-math></inline-formula>; 2) a two-pole/four-TZ BPF with 2.4:1 BW tuning ratio, flat <inline-formula> <tex-math notation="LaTeX">$\tau _{g}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$Q_{\mathrm {eff}}> 9000$ </tex-math></inline-formula>; and 3) a flat <inline-formula> <tex-math notation="LaTeX">$\tau _{g}$ </tex-math></inline-formula> diplexer with two transmission bands centered at 418 and 433.9 MHz.

[1]  Chengjie Zuo,et al.  Super-high-frequency two-port AlN contour-mode resonators for RF applications , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Roy H. Olsson,et al.  On/Off micro-electromechanical switching of AlN piezoelectric resonators , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[3]  Janet Nguyen,et al.  A Method for Attenuating the Spurious Responses of Aluminum Nitride Micromechanical Filters , 2014, Journal of Microelectromechanical Systems.

[4]  Dimitrios Peroulis,et al.  Coupling-Matrix-Based Design of High-$Q$ Bandpass Filters Using Acoustic-Wave Lumped-Element Resonator (AWLR) Modules , 2015, IEEE Transactions on Microwave Theory and Techniques.

[5]  A. Mortazawi,et al.  Intrinsically Switchable Ferroelectric Contour Mode Resonators , 2013, IEEE Transactions on Microwave Theory and Techniques.

[6]  Phil Warder,et al.  Golden Age for Filter Design , 2015 .

[7]  D. Peroulis,et al.  RF design of acoustic-wave-lumped-element-resonator-(AWLR)-based bandpass filters with constant in-band group delay , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[8]  Robert Aigner Filter technologies for converged RF-frontend architectures: SAW, BAW and beyond , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[9]  K. Hashimoto,et al.  Design of narrow bandwidth ladder-type filters with sharp transition bands using mutually connected resonator elements , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Dimitrios Peroulis,et al.  High- $Q$ Bandstop Filters Exploiting Acoustic-Wave-Lumped-Element Resonators (AWLRs) , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  H. Yatsuda Design technique for nonlinear phase SAW filters using slanted finger interdigital transducers , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  G. Piazza,et al.  Multi-frequency wideband RF filters using high electromechanical coupling laterally vibrating lithium niobate MEMS resonators , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[13]  R. Aigner,et al.  SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses , 2008, 2008 IEEE Ultrasonics Symposium.

[14]  Dimitrios Peroulis,et al.  Hybrid Acoustic-Wave-Lumped-Element Resonators (AWLRs) for High-$Q$ Bandpass Filters With Quasi-Elliptic Frequency Response , 2015, IEEE Transactions on Microwave Theory and Techniques.

[15]  T. Omori,et al.  Optimal Design of an RSPUDT-Based SAW Filter with Constant Group Delay , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.