A more accurate one-dimensional analysis and design of irregular LDPC codes
暂无分享,去创建一个
[1] Li Ping,et al. Concatenated tree codes: A low-complexity, high-performance approach , 2001, IEEE Trans. Inf. Theory.
[2] S. Brink. Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .
[3] Daniel A. Spielman,et al. Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[4] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[5] Radford M. Neal,et al. Near Shannon limit performance of low density parity check codes , 1996 .
[6] H. Jin,et al. Irregular repeat accumulate codes , 2000 .
[7] Hesham El Gamal,et al. Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[8] M. Aminshokrollahi. New sequences of linear time erasure codes approaching the channel capacity , 1999 .
[9] Sae-Young Chung,et al. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.
[10] Stephan ten Brink,et al. Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.
[11] G. M. Maggio,et al. An approximate analytical model of the message passing decoder of LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[12] Dariush Divsalar,et al. Low Complexity Turbo-like Codes , 2000 .
[13] M. Shokrollahi,et al. Capacity-achieving sequences , 2001 .
[14] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[15] Stephan ten Brink,et al. Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..
[16] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[17] Stephan ten Brink. Iterative Decoding Trajectories of Parallel Concatenated Codes , 1999 .
[18] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[19] Amin Shokrollahi,et al. New Sequences of Linear Time Erasure Codes Approaching the Channel Capacity , 1999, AAECC.
[20] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[21] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[22] Shlomo Shamai,et al. On interleaved, differentially encoded convolutional codes , 1999, IEEE Trans. Inf. Theory.
[23] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[24] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.