Hollow-shelled nanoreactors endowed with high catalytic activity.

Hollow-shelled nanoreactors have emerged as efficient structures to maximize the potential of nanoparticles in the field of catalysis. In this Concept article, we underline the importance of both the morphology of the active nanoparticles as well as the composition and porosity of the shell for the catalytic performance of the overall nanocomposite. Different configurations are discussed, with a focus on preparative methods and applications in organic synthesis. Perspectives on future designs that may offer new opportunities to improve the selectivity of the catalyzed transformations and add additional features are also addressed, in order to illustrate the potential of these unique nanostructures.

[1]  Hui Zhang,et al.  Noble-metal nanocrystals with concave surfaces: synthesis and applications. , 2012, Angewandte Chemie.

[2]  Chih-Ta Tseng,et al.  Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst , 2011 .

[3]  C. Chu,et al.  Reversible pore-structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting. , 2011, Small.

[4]  Hatem Fessi,et al.  Theranostic applications of nanoparticles in cancer. , 2012, Drug discovery today.

[5]  A. Stierle,et al.  Shape Changes of Supported Rh Nanoparticles During Oxidation and Reduction Cycles , 2008, Science.

[6]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[7]  Ziyu Wu,et al.  Diffusion Induced Reactant Shape Selectivity inside Mesoporous Pores of Pd@meso-SiO2 Nanoreactor in Suzuki Coupling Reactions , 2012 .

[8]  Younan Xia,et al.  Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. , 2003, Journal of the American Chemical Society.

[9]  M. Toney,et al.  In situ and ex situ studies of platinum nanocrystals: growth and evolution in solution. , 2009, Journal of the American Chemical Society.

[10]  Eun Joo Kang,et al.  Hollow silica nanosphere having functionalized interior surface with thin manganese oxide layer: nanoreactor framework for size-selective Lewis acid catalysis , 2010 .

[11]  N. Zheng,et al.  A Multi‐Yolk–Shell Structured Nanocatalyst Containing Sub‐10 nm Pd Nanoparticles in Porous CeO2 , 2012 .

[12]  Hongyu Chen,et al.  Exploiting core-shell synergy for nanosynthesis and mechanistic investigation. , 2013, Accounts of chemical research.

[13]  Hyunjoon Song,et al.  Precise tuning of porosity and surface functionality in Au@SiO2 nanoreactors for high catalytic efficiency , 2008 .

[14]  B. Liu,et al.  Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. , 2005, Small.

[15]  G. Somorjai,et al.  Nanotechnology in catalysis , 2004 .

[16]  Jiangtian Li,et al.  A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents , 2008 .

[17]  Jianfeng Chen,et al.  Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. , 2004, Biomaterials.

[18]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[19]  K. Neoh,et al.  Hybrid nanorattles of metal core and stimuli-responsive polymer shell for confined catalytic reactions , 2011 .

[20]  Qing Yang,et al.  Application of Noble Metal Nanoparticles in Organic Reactions , 2011 .

[21]  G. Somorjai,et al.  Molecular factors of catalytic selectivity. , 2008, Angewandte Chemie.

[22]  Fang Niu,et al.  Pd nanoparticles in silica hollow spheres with mesoporous walls: a nanoreactor with extremely high activity. , 2010, Chemical communications.

[23]  Fangqiong Tang,et al.  A Silica Nanorattle with a Mesoporous Shell: An Ideal Nanoreactor for the Preparation of Tunable Gold Cores , 2010, Advanced materials.

[24]  A. Gellman,et al.  Nanocatalysis: More than speed. , 2009, Nature materials.

[25]  D. Astruc,et al.  Nanoparticles and catalysis , 2007 .

[26]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[27]  Yadong Yin,et al.  Ship in a Bottle: In situ Confined Growth of Complex Yolk‐shell Catalysts , 2013 .

[28]  Miao Xie,et al.  Stabilizing Pd on the surface of hollow magnetic mesoporous spheres: a highly active and recyclable catalyst for hydrogenation and Suzuki coupling reactions , 2013 .

[29]  G. Somorjai,et al.  Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles. , 2008, Nano letters.

[30]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[31]  Changyan Cao,et al.  Temperature-responsive smart nanoreactors: poly(N-isopropylacrylamide)-coated Au@mesoporous-SiO2 hollow nanospheres. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  N. Zheng,et al.  An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. , 2009, Small.

[33]  R. Schlögl,et al.  Die CO‐Oxidation als Modellreaktion für heterogene Prozesse , 2011 .

[34]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[35]  M. Grzelczak,et al.  Carbon nanotubes encapsulated in wormlike hollow silica shells. , 2006, Small.

[36]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[37]  Hyunjoon Song,et al.  Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability , 2010 .

[38]  Hyunjoon Song,et al.  A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p‐Nitrophenol , 2008 .

[39]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[40]  Faqi Li,et al.  Engineering Inorganic Nanoemulsions/Nanoliposomes by Fluoride‐Silica Chemistry for Efficient Delivery/Co‐Delivery of Hydrophobic Agents , 2012 .

[41]  N. Zheng,et al.  Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. , 2012, ACS nano.

[42]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[43]  Jianfeng Chen,et al.  Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects , 2006 .

[44]  Xinlin Yang,et al.  Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor , 2010 .

[45]  Jianlin Shi,et al.  Uniform Rattle‐type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained‐Release Property , 2008 .

[46]  Fei Liu,et al.  Recent developments in the chemical synthesis of inorganic porous capsules , 2009 .

[47]  Hongyu Chen,et al.  Revisiting the Stöber method: inhomogeneity in silica shells. , 2011, Journal of the American Chemical Society.

[48]  D. T. McQuade,et al.  Organic reaction systems: using microcapsules and microreactors to perform chemical synthesis. , 2013, Accounts of chemical research.

[49]  Qiuwen Chen,et al.  Hierarchical hollow TiO2 spheres: facile synthesis and improved visible-light photocatalytic activity. , 2013, Dalton transactions.

[50]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[51]  S. Liao,et al.  High-performance gold-promoted palladium catalyst towards the hydrogenation of phenol with mesoporous hollow spheres as support , 2012 .

[52]  N. Zheng,et al.  Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. , 2013, Nanoscale.

[53]  Tim Leshuk,et al.  Mesoporous hollow sphere titanium dioxide photocatalysts through hydrothermal silica etching. , 2012, ACS applied materials & interfaces.

[54]  T. Guo,et al.  A dual-template imprinted capsule with remarkably enhanced catalytic activity for pesticide degradation and elimination simultaneously. , 2013, Chemical communications.

[55]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[56]  Luis M Liz-Marzán,et al.  Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. , 2009, Journal of the American Chemical Society.

[57]  Tianyu Yang,et al.  Yolk–Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation , 2012 .

[58]  L. Archer,et al.  Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells , 2006 .

[59]  Gadi Rothenberg,et al.  Transition‐metal nanoparticles: synthesis, stability and the leaching issue , 2008 .

[60]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[61]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[62]  J. Porco,et al.  Chemical Synthesis of Complex Molecules Using Nanoparticle Catalysis. , 2012, ACS catalysis.

[63]  Younan Xia,et al.  Metal nanocrystals with highly branched morphologies. , 2011, Angewandte Chemie.

[64]  Jie Yin,et al.  Iodine Ions Mediated Formation of Monomorphic Single-Crystalline Platinum Nanoflowers , 2012 .

[65]  Ilkeun Lee,et al.  Tuning selectivity in catalysis by controlling particle shape. , 2009, Nature materials.

[66]  Yuanyi Zheng,et al.  A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs , 2012 .

[67]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[68]  A. Vrij,et al.  Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle Formation and Growth Mechanism , 1992 .

[69]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[70]  Si-Han Wu,et al.  Corking and Uncorking a Catalytic Yolk-Shell Nanoreactor: Stable Gold Catalyst in Hollow Silica Nanosphere , 2011 .

[71]  Y. Shao-horn,et al.  Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. , 2009, Journal of the American Chemical Society.

[72]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[73]  S. Bian,et al.  Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. , 2009, Chemical communications.

[74]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[75]  Feng Chen,et al.  Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. , 2010, ACS nano.

[76]  M. El-Sayed,et al.  Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. , 2010, Nano letters.

[77]  H. Yang,et al.  Roles of Twin Defects in the Formation of Platinum Multipod Nanocrystals , 2007 .

[78]  Lei Jiang,et al.  Nanoporous microspheres: from controllable synthesis to healthcare applications. , 2013, Journal of materials chemistry. B.

[79]  L. Liz‐Marzán,et al.  Highly Catalytic Single-Crystal Dendritic Pt Nanostructures Supported on Carbon Nanotubes , 2009 .

[80]  F. Zaera New Challenges in Heterogeneous Catalysis for the 21st Century , 2012, Catalysis Letters.

[81]  H. Zeng,et al.  Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. , 2012, Journal of the American Chemical Society.

[82]  Benito Rodríguez-González,et al.  Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. , 2012, Angewandte Chemie.

[83]  G. Somorjai,et al.  Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. , 2013, Journal of the American Chemical Society.

[84]  Yadong Yin,et al.  Self-templated synthesis of hollow nanostructures , 2009 .

[85]  T. Asefa,et al.  Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell. , 2012, ChemSusChem.

[86]  Lijun Wang,et al.  Synthesis of a multinanoparticle-embedded core/mesoporous silica shell structure as a durable heterogeneous catalyst. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[87]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[88]  A. Xu,et al.  Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. , 2012, Nanoscale.

[89]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[90]  G. Somorjai,et al.  Surface structures in ammonia synthesis , 1994 .

[91]  Dongsheng Xu,et al.  Soft Template Synthesis of Yolk/Silica Shell particles , 2010, Advanced materials.

[92]  Robert Schlögl,et al.  CO oxidation as a prototypical reaction for heterogeneous processes. , 2011, Angewandte Chemie.

[93]  A. Haes,et al.  Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. , 2008, Journal of the American Chemical Society.

[94]  K. Chao,et al.  Highly Dispersed Metal Nanoparticles in Functionalized SBA-15 , 2003 .

[95]  Limin Guo,et al.  Hollow mesoporous carbon spheres with magnetic cores and their performance as separable bilirubin adsorbents. , 2009, Chemistry, an Asian journal.

[96]  Jacob N. Israelachvili,et al.  Interactions of silica surfaces , 1994 .

[97]  Xiaobo Li,et al.  Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites , 2011 .

[98]  Younan Xia,et al.  Metall‐Nanokristalle mit hochverzweigten Morphologien , 2011 .

[99]  Tierui Zhang,et al.  Permeable silica shell through surface-protected etching. , 2008, Nano letters.

[100]  Zhifeng Dou,et al.  Au nanoparticles embedded into the inner wall of TiO2 hollow spheres as a nanoreactor with superb thermal stability. , 2013, Chemical communications.

[101]  P. Jing,et al.  Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application. , 2013, Chemical communications.

[102]  Jun Song Chen,et al.  Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. , 2011, Chemical communications.

[103]  X. Fang,et al.  Fabrication and application of inorganic hollow spheres. , 2011, Chemical Society reviews.

[104]  G. A. Somorjai,et al.  Molekulare Faktoren der katalytischen Selektivität , 2008 .

[105]  G. Somorjai,et al.  Control of Selectivity in Heterogeneous Catalysis by Tuning Nanoparticle Properties and Reactor Residence Time Results and Discussion , 2022 .

[106]  Zhi-You Zhou,et al.  Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles , 2008 .

[107]  Xiao Hu,et al.  Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity. , 2013, Dalton transactions.

[108]  K. Park,et al.  Porosity control of Pd@SiO2 yolk-shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[109]  Linlin Li,et al.  Facile and Scalable Synthesis of Tailored Silica “Nanorattle” Structures , 2009 .

[110]  Wangqing Zhang,et al.  Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres , 2011 .

[111]  Guicun Li,et al.  Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core-shell microspheres with tunable chamber structures via a self-template method. , 2008, Chemical communications.

[112]  Ilkeun Lee,et al.  A yolk@shell nanoarchitecture for Au/TiO2 catalysts. , 2011, Angewandte Chemie.