A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method

Abstract The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, or J 2 , model uses a predictor–corrector algorithm–the radial return algorithm–to integrate the model. For non-quadratic yield surfaces, including anisotropic yield surfaces, no simple algorithm exists. This paper presents and analyzes a line search algorithm for the return mapping problem that shows excellent improvement over a Newton–Raphson model. Two non-quadratic yield surfaces–one isotropic and one anisotropic–are studied in this paper. The line search algorithm used for integrating the models is shown to be reliable and robust. The theory and implementation of the models, the details of the return mapping algorithm, and results that show the effectiveness of the method are presented. Finally, a few simple boundary value problems verify the implementation and show the impact of the models. For the internal pressurization of a cylinder, the importance of modeling anisotropy correctly is shown.

[1]  J. C. Simo,et al.  Non‐smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms , 1988 .

[2]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[3]  David R. Owen,et al.  Universal anisotropic yield criterion based on superquadric functional representation: Part 1. Algorithmic issues and accuracy analysis , 1993 .

[4]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[5]  R. D. Krieg,et al.  Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model , 1977 .

[6]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[7]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[8]  Clark R. Dohrmann,et al.  A robust algorithm for finding the eigenvalues and eigenvectors of 3 × 3 symmetric matrices , 2008 .

[9]  Frédéric Barlat,et al.  Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .

[10]  M. Kroon,et al.  Numerical implementation of a $$J_2$$- and $$J_3$$-dependent plasticity model based on a spectral decomposition of the stress deviator , 2013 .

[11]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[12]  Frédéric Barlat,et al.  Orthotropic yield criterion for hexagonal closed packed metals , 2006 .

[13]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Frédéric Barlat,et al.  Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals , 1987 .

[15]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[16]  R. W. Ogden,et al.  A theorem of tensor calculus and its application to isotropic elasticity , 1971 .

[17]  T. Hughes Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity , 1984 .

[18]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[19]  R. E. Dick,et al.  Plane stress yield functions for aluminum alloy sheets , 2002 .

[20]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[21]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[22]  F. Barlat,et al.  Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets , 1987 .

[23]  I. Schmidt,et al.  Line‐search methods in general return mapping algorithms with application to porous plasticity , 2008 .

[24]  R. E. Dick,et al.  Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation , 2004 .

[25]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[26]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[27]  Agustí Pérez Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part II: Globally convergent schemes , 2000 .

[28]  R. F. Kulak,et al.  Accurate Numerical Solutions for Elastic-Plastic Models , 1979 .

[29]  Dong-Yol Yang,et al.  Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials , 1999 .