The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2.

[1]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[2]  Yi-Chun Jin,et al.  Highly Active TiO2-xNx Visible Photocatalyst Prepared by N-Doping in Et3N/EtOH Fluid under Supercritical Conditions , 2008 .

[3]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[4]  K. Parida,et al.  Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. , 2008, Journal of Colloid and Interface Science.

[5]  J. Rodríguez,et al.  N Doping of Rutile TiO2 (110) Surface. A Theoretical DFT Study , 2008 .

[6]  Kesong Yang,et al.  Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles , 2007 .

[7]  C. Sanchez,et al.  Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts , 2007 .

[8]  Ching-Yuan Chang,et al.  Effect of Plasma Processing Gas Composition on the Nitrogen-Doping Status and Visible Light Photocatalysis of TiO2 , 2007 .

[9]  S. Gialanella,et al.  Tailored Anatase/Brookite Nanocrystalline TiO2. The Optimal Particle Features for Liquid- and Gas-Phase Photocatalytic Reactions , 2007 .

[10]  F. J. Knorr,et al.  Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[11]  H. Kisch,et al.  A Low-Band Gap, Nitrogen-Modified Titania Visible-Light Photocatalyst , 2007 .

[12]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[13]  Jinlong Zhang,et al.  Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III) , 2007 .

[14]  F. Iskandar,et al.  Enhanced Photocatalytic Performance of Brookite TiO2 Macroporous Particles Prepared by Spray Drying with Colloidal Templating , 2007 .

[15]  B. Chi,et al.  One-Step Template-Free Route for Synthesis of Mesoporous N-Doped Titania Spheres , 2007 .

[16]  A. Testino,et al.  Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. a systematic approach. , 2007, Journal of the American Chemical Society.

[17]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[18]  J. Hanson,et al.  Reaction of NH3 with titania: N-doping of the oxide and TiN formation , 2007 .

[19]  Shuangxi Liu,et al.  An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue , 2007 .

[20]  Galo J. A. A. Soler-Illia,et al.  Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility , 2006 .

[21]  G. Pacchioni,et al.  Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. , 2006, Journal of the American Chemical Society.

[22]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[23]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[24]  J. Nedeljković,et al.  Photoluminescence of anatase and rutile TiO2 particles. , 2006, The journal of physical chemistry. B.

[25]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[26]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[27]  T. Amemiya,et al.  Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. , 2006, Chemistry.

[28]  Shuncheng Lee,et al.  Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. , 2006, Chemical communications.

[29]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[30]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[31]  H. García,et al.  Enhanced photocatalytic activity of zeolite-encapsulated TiO2 clusters by complexation with organic additives and N-doping. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Zhigang Chen,et al.  The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction , 2006 .

[33]  Balasubramanian Viswanathan,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst , 2005 .

[34]  N. Machado,et al.  Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25 , 2005 .

[35]  M. Yoon,et al.  Synthesis of Liposome-Templated Titania Nanodisks: Optical Properties and Photocatalytic Activities , 2005 .

[36]  Taihong Wang,et al.  Enhanced photocatalytic activity of ZnO nanotetrapods , 2005 .

[37]  M. Habibi,et al.  Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension , 2005 .

[38]  Jinlong Zhang,et al.  Preparation of controllable crystalline titania and study on the photocatalytic properties. , 2005, The journal of physical chemistry. B.

[39]  Qiujing Yang,et al.  Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. , 2005, The journal of physical chemistry. B.

[40]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[41]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[42]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[43]  C. Burda,et al.  Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles , 2004 .

[44]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[45]  L. Gao,et al.  (Sulfur, Nitrogen)‐Codoped Rutile‐Titanium Dioxide as a Visible‐Light‐Activated Photocatalyst , 2004 .

[46]  Chengchun Tang,et al.  Monodispersed Spherical Particles of Brookite‐Type TiO2: Synthesis, Characterization, and Photocatalytic Property , 2004 .

[47]  Ryuhei Nakamura,et al.  Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes , 2004 .

[48]  Jaesung Song,et al.  The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals , 2004 .

[49]  N. Wu,et al.  Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution , 2004 .

[50]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[51]  Ryuhei Nakamura,et al.  Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. , 2004, Journal of the American Chemical Society.

[52]  F. Saito,et al.  Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine , 2003 .

[53]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[54]  R. Amal,et al.  The effect of preparation method on the photoactivity of crystalline titanium dioxide particles , 2003 .

[55]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[56]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[57]  H. Kisch,et al.  Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  A. Mills,et al.  Photodecomposition of ozone sensitised by a film of titanium dioxide on glass , 2003 .

[59]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[60]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[61]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[62]  Y. Nosaka,et al.  Properties of O2.- and OH. formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions , 2002 .

[63]  W. Maier,et al.  Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst , 2001 .

[64]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[65]  M. Matsumura,et al.  Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution , 2001 .

[66]  Jimmy C. Yu,et al.  Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2 , 2000 .

[67]  P. F. Greenfield,et al.  Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water , 2000 .

[68]  A. Fujishima,et al.  Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces , 1999 .

[69]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[70]  Soofin Cheng,et al.  Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants , 1997 .

[71]  Michael A. Henderson,et al.  Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces , 1996 .

[72]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[73]  T. Nakayama Structure of TiO2 / SiO2 Multilayer Films , 1994 .

[74]  S. Bourgeois,et al.  Use of isotopic labelling in a SIMS study of the hydroxylation of TiO2(100) surfaces , 1992 .

[75]  Marye Anne Fox,et al.  In situ photoluminescence of titania as a probe of photocatalytic reactions , 1989 .

[76]  T. Morimoto,et al.  Molecularly adsorbed water on the bare surface of titania (rutile) , 1987 .

[77]  Norikazu Aikawa,et al.  Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous vycor glass , 1985 .

[78]  J. White,et al.  Characterization of species adsorbed on oxidized and reduced anatase , 1982 .

[79]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[80]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .